Characterization of boronized AISI 1050 steel and optimization of process parameters

In this study, AISI 1050 steel was boronized at temperatures of 800, 850, 900, 950 and 1000 °C for 3, 6, and 9 hours by means of a pack boronizing process. The formation of the boride layer was investigated. The characterization of the boronized surfaces was determined by X-ray diffraction (XRD) ana...

Full description

Saved in:
Bibliographic Details
Published inMaterialprüfung Vol. 61; no. 6; pp. 549 - 553
Main Authors Boztepe, Mete Han, Bayramoglu, Melih, Uzay, Cagrı, Dagsuyu, Cansu, Kokangul, Ali, Geren, Necdet
Format Journal Article
LanguageEnglish
Published De Gruyter 01.06.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, AISI 1050 steel was boronized at temperatures of 800, 850, 900, 950 and 1000 °C for 3, 6, and 9 hours by means of a pack boronizing process. The formation of the boride layer was investigated. The characterization of the boronized surfaces was determined by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Although dual phase, FeB and Fe B were observed in the boride layer, the intensity of the FeB was slight and collected only near the outer surface which is the desired structural morphology. As the boronizing temperature and holding time strongly affect the results of both boride layer thickness and the surface hardness of the material, multi-objective mathematical models were developed for optimization. Energy consumption during boronizing was also considered. Hence, the optimum values for both temperature and holding time were determined, both of which maximize surface hardness and boride layer thickness while minimizing energy consumption.
ISSN:0025-5300
2195-8572
DOI:10.3139/120.111353