Measurement system for ultraviolet channel modeling and communications

There has been an increasing interest in ultraviolet (UV) communications as a promising technology for non-line-of-sight (NLOS) networking by exploiting atmospheric scattering at UV wavelengths that enables a unique NLOS UV communication channel. While there has been significant theoretical and simu...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 31; no. 15; pp. 23714 - 23728
Main Authors Arslan, C Hakan, Dagefu, Fikadu T, Moore, Terrence J, Weisman, Michael J, Drost, Robert J
Format Journal Article
LanguageEnglish
Published United States 17.07.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:There has been an increasing interest in ultraviolet (UV) communications as a promising technology for non-line-of-sight (NLOS) networking by exploiting atmospheric scattering at UV wavelengths that enables a unique NLOS UV communication channel. While there has been significant theoretical and simulation-based investigation of the UV channel characteristics, there is limited work in terms of experimental research and validation of the analytical models. In this paper, we present a flexible experimental system for precise UV channel and communications measurements. Specifically, a transceiver system is developed that consists of a gimbal, UV light-emitting-diode array, and photomultiplier tube detector, node synchronization, and LabVIEW-based data acquisition subsystems. Novel techniques to precisely characterize the UV LED array radiation pattern, absolute transmit power, and field of view of the detector are also presented. The utility of the developed system is then demonstrated by performing a variety of experiments including UV channel model validation and steering optimization for UV communication links where the results were in very good agreement with theory and simulation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.487073