Dietary vitamin C supplementation lowers blood pressure in spontaneously hypertensive rats

In spontaneously hypertensive rats (SHRs) excess endogenous aldehydes bind sulfhydryl groups of membrane proteins, altering membrane Ca2+ channels and increasing cytosolic free calcium and blood pressure. The thiol compound, N-acetyl cysteine, normalizes elevated blood pressure in SHRs by binding ex...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular biochemistry Vol. 218; no. 1-2; pp. 97 - 103
Main Authors Vasdev, S, Ford, C A, Parai, S, Longerich, L, Gadag, V
Format Journal Article
LanguageEnglish
Published Netherlands Springer Nature B.V 01.02.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In spontaneously hypertensive rats (SHRs) excess endogenous aldehydes bind sulfhydryl groups of membrane proteins, altering membrane Ca2+ channels and increasing cytosolic free calcium and blood pressure. The thiol compound, N-acetyl cysteine, normalizes elevated blood pressure in SHRs by binding excess endogenous aldehydes. Vitamin C can increase tissue cysteine and glutathione levels. The aim of the present study was to investigate whether a dietary supplementation of vitamin C can lower tissue aldehydes and blood pressure and normalize associated biochemical and histopathological changes in SHRs. Starting at 12 weeks of age, animals were divided into 3 groups of 6 animals each. Animals in the WKY-control group and SHR-control group were given a normal diet and the SHR-vitamin C group a diet supplemented with vitamin C (1000 mg/kg feed) for the next 9 weeks. After nine weeks, systolic blood pressure, platelet [Ca2+]i, plasma insulin and liver, kidney and aortic aldehyde conjugates were significantly higher in SHR controls as compared to WKY controls and the SHR-vitamin C group. SHR-controls also showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidneys. Dietary vitamin C supplementation in SHRs lowered the systolic blood pressure, tissue aldehyde conjugates and attenuated adverse renal vascular changes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0300-8177
1573-4919
DOI:10.1023/A:1007234027421