BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate...
Saved in:
Published in | Chinese physics B Vol. 26; no. 3; pp. 321 - 329 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.03.2017
|
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/26/3/033702 |
Cover
Loading…
Summary: | Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate for laser cooling and magneto-optical trapping, is discussed in detail.The highly diagonal Franck-Condon factors between theX2∑+1/2and A2∏1/2states are first confirmed with three different methods. Afterwards, with the effective Hamiltonian approach and irreducible tensor theory, the hypertine structure of theX2∑+1/2state is calculated accurately. A scheme for laser cooling is given clearly. Besides, the Zeeman effects of the upper ( A2∏1/2)andlower(X2∑+1/2)levels are also studied, and their respective g factors are obtained under a weak magnetic field. Its large g factor of the upper stateA2∏1/2is advantageous for magneto-optical trapping. Finally, by studying Stark effect of BaFin theX2∑+1/2, we investigate the dependence of the internal effective electric field on the applied electric field. It is suggested that such a laser-cooled BaF is also a promising candidate for precision measurement of electron electric dipole moment. |
---|---|
Bibliography: | Liang Xu, Bin Wei, Yong Xia, Lian-Zhong Deng, and Jian-Ping Yin(State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China) laser cooling, magneto-optical trapping, BaF radical 11-5639/O4 Recently, there have been great interest and advancement in the field of laser cooling and magneto-optical trapping of molecules. The rich internal structure of molecules naturally lends themselves to extensive and exciting applications. In this paper, the radical 138Ba19F, as a promising candidate for laser cooling and magneto-optical trapping, is discussed in detail.The highly diagonal Franck-Condon factors between theX2∑+1/2and A2∏1/2states are first confirmed with three different methods. Afterwards, with the effective Hamiltonian approach and irreducible tensor theory, the hypertine structure of theX2∑+1/2state is calculated accurately. A scheme for laser cooling is given clearly. Besides, the Zeeman effects of the upper ( A2∏1/2)andlower(X2∑+1/2)levels are also studied, and their respective g factors are obtained under a weak magnetic field. Its large g factor of the upper stateA2∏1/2is advantageous for magneto-optical trapping. Finally, by studying Stark effect of BaFin theX2∑+1/2, we investigate the dependence of the internal effective electric field on the applied electric field. It is suggested that such a laser-cooled BaF is also a promising candidate for precision measurement of electron electric dipole moment. |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/26/3/033702 |