Online Optimization Under Adversarial Perturbations

We investigate the problem of online optimization under adversarial perturbations. In each round of this repeated game, a player selects an action from a decision set using a randomized strategy, and then Nature reveals a loss function for this action, for which the player incurs a loss. The game th...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in signal processing Vol. 10; no. 2; pp. 256 - 269
Main Authors Donmez, Mehmet A., Raginsky, Maxim, Singer, Andrew C.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate the problem of online optimization under adversarial perturbations. In each round of this repeated game, a player selects an action from a decision set using a randomized strategy, and then Nature reveals a loss function for this action, for which the player incurs a loss. The game then repeats for a total of T rounds, over which the player seeks to minimize the total incurred loss, or more specifically, the excess incurred loss with respect to a fixed comparison class. The added challenge over traditional online optimization, is that for k of the T rounds, after the player selects an action, an adversarial agent perturbs this action arbitrarily. Through a worst case adversary framework to model the perturbations, we introduce a randomized algorithm that is provably robust against such adversarial attacks. In particular, we show that this algorithm is Hannan consistent with respect to a rich class of randomized strategies under mild regularity conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-4553
1941-0484
DOI:10.1109/JSTSP.2015.2496911