Finite-Frequency H-/H∞ Fault Detection for Discrete-Time T-S Fuzzy Systems With Unmeasurable Premise Variables

This paper investigates a finite-frequency <inline-formula> <tex-math notation="LaTeX">H_{-}/H_{\infty } </tex-math></inline-formula> fault detection method for discrete-time T-S fuzzy systems with unmeasurable premise variables. To minimize the effect of uncertaint...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 51; no. 6; pp. 3017 - 3026
Main Authors Zhou, Meng, Cao, Zhengcai, Zhou, MengChu, Wang, Jing
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2019.2915050

Cover

Loading…
More Information
Summary:This paper investigates a finite-frequency <inline-formula> <tex-math notation="LaTeX">H_{-}/H_{\infty } </tex-math></inline-formula> fault detection method for discrete-time T-S fuzzy systems with unmeasurable premise variables. To minimize the effect of uncertainties on system performance and maximize that of actuator faults on the generated residual, both the <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> disturbance attenuation index and finite-frequency <inline-formula> <tex-math notation="LaTeX">H_{-} </tex-math></inline-formula> fault sensitivity index are utilized. Since the premised variables are unmeasurable, the existing generalized Kalman-Yakubovich-Popov lemma cannot be directly extended to these nonlinear systems. In this paper, the conditions of allowing one to design the proposed <inline-formula> <tex-math notation="LaTeX">H_{-}/H_{\infty } </tex-math></inline-formula> fault detection observer are established and transformed into linear matrix inequalities. Some scalars and slack matrices are introduced to bring extra degrees of freedom in observer design. Finally, a single-link robotic manipulator model is utilized to illustrate that the proposed technique can detect faults with smaller amplitude than that required by a normal <inline-formula> <tex-math notation="LaTeX">H_{\infty } </tex-math></inline-formula> observer technique.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2019.2915050