Organ specificity of a vacuolar Ca2+-binding protein RVCaB in radish and its expression under Ca2+-deficient conditions

Radish vacuoles contain a new type of Ca2+-binding protein (RVCaB) with high capacity and low affinity for Ca2+. The protein is able to stimulate Ca2+ uptake into vacuoles, which is driven by Ca2+-ATPase and Ca2+/H+ antiporter. In the present study, we found that the level of RVCaB mRNA is high in s...

Full description

Saved in:
Bibliographic Details
Published inPlant molecular biology Vol. 47; no. 5; pp. 633 - 640
Main Authors Yuasa, K, Maeshima, M
Format Journal Article
LanguageEnglish
Published Netherlands Springer Nature B.V 01.11.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Radish vacuoles contain a new type of Ca2+-binding protein (RVCaB) with high capacity and low affinity for Ca2+. The protein is able to stimulate Ca2+ uptake into vacuoles, which is driven by Ca2+-ATPase and Ca2+/H+ antiporter. In the present study, we found that the level of RVCaB mRNA is high in seedling hypocotyls and mature taproots but low in young roots and mature leaves. The RVCaB protein was abundant in hypocotyls and taproots but absent in leaves. The levels of the transcript and protein of RVCaB in taproots were gradually increased during maturation. The level of RVCaB mRNA in seedling hypocotyls doubled within a few hours when the growth medium was changed from 10 mM CaCl2 to water, although the level was strongly suppressed in 100 mM CaCl2. This response of the RVCaB gene was specific to Ca2+ and did not occur with other ions including K+ and Mg2+. RVCaB functioning as a Ca2+-sequestering protein in taproot vacuoles to provide for the Ca2+ deficiency is discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0167-4412
1573-5028
DOI:10.1023/a:1012355205991