Simulation of integrate-and-fire neuron circuits using HfO2-based ferroelectric field effect transistors

Inspired by neurobiological systems, Spiking Neural Networks (SNNs) are gaining an increasing interest in the field of bio-inspired machine learning. Neurons, as central processing and short-term memory units of biological neural systems, are thus at the forefront of cutting-edge research approaches...

Full description

Saved in:
Bibliographic Details
Published in2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS) pp. 229 - 232
Main Authors Suresh, Bharathwaj, Bertele, Martin, Breyer, Evelyn T., Klein, Philipp, Mulaosmanovic, Halid, Mikolajick, Thomas, Slesazeck, Stefan, Chicca, Elisabetta
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inspired by neurobiological systems, Spiking Neural Networks (SNNs) are gaining an increasing interest in the field of bio-inspired machine learning. Neurons, as central processing and short-term memory units of biological neural systems, are thus at the forefront of cutting-edge research approaches. The realization of CMOS circuits replicating neuronal features, namely the integration of action potentials and firing according to the all-or-nothing law, imposes various challenges like large area and power consumption. The non-volatile storage of polarization states and accumulative switching behavior of nanoscale HfO 2 - based Ferroelectric Field-Effect Transistors (FeFETs), promise to circumvent these issues. In this paper, we propose two FeFET-based neuronal circuits emulating the Integrate-and-Fire (I&F) behavior of biological neurons on the basis of SPICE simulations. Additionally, modulating the depolarization of the FeFETs enables the replication of a biology-based concept known as membrane leakage. The presented capacitor-free implementation is crucial for the development of neuromorphic systems that allow more complex features at a given area and power constraint.
AbstractList Inspired by neurobiological systems, Spiking Neural Networks (SNNs) are gaining an increasing interest in the field of bio-inspired machine learning. Neurons, as central processing and short-term memory units of biological neural systems, are thus at the forefront of cutting-edge research approaches. The realization of CMOS circuits replicating neuronal features, namely the integration of action potentials and firing according to the all-or-nothing law, imposes various challenges like large area and power consumption. The non-volatile storage of polarization states and accumulative switching behavior of nanoscale HfO 2 - based Ferroelectric Field-Effect Transistors (FeFETs), promise to circumvent these issues. In this paper, we propose two FeFET-based neuronal circuits emulating the Integrate-and-Fire (I&F) behavior of biological neurons on the basis of SPICE simulations. Additionally, modulating the depolarization of the FeFETs enables the replication of a biology-based concept known as membrane leakage. The presented capacitor-free implementation is crucial for the development of neuromorphic systems that allow more complex features at a given area and power constraint.
Author Breyer, Evelyn T.
Klein, Philipp
Bertele, Martin
Slesazeck, Stefan
Mulaosmanovic, Halid
Chicca, Elisabetta
Suresh, Bharathwaj
Mikolajick, Thomas
Author_xml – sequence: 1
  givenname: Bharathwaj
  surname: Suresh
  fullname: Suresh, Bharathwaj
  organization: Birla Institute of Technology and Science (BITS) Pilani,Hyderabad Campus,Department of Electrical and Electronics Engineering,Hyderabad,India,500078
– sequence: 2
  givenname: Martin
  surname: Bertele
  fullname: Bertele, Martin
  organization: Bielefeld University,Faculty of Technology and Cluster of Excellence Cognitive Interaction Technology (CITEC),Bielefeld,Germany,33615
– sequence: 3
  givenname: Evelyn T.
  surname: Breyer
  fullname: Breyer, Evelyn T.
  organization: NaMLab gGmbH,Dresden,Germany,01187
– sequence: 4
  givenname: Philipp
  surname: Klein
  fullname: Klein, Philipp
  organization: Bielefeld University,Faculty of Technology and Cluster of Excellence Cognitive Interaction Technology (CITEC),Bielefeld,Germany,33615
– sequence: 5
  givenname: Halid
  surname: Mulaosmanovic
  fullname: Mulaosmanovic, Halid
  organization: NaMLab gGmbH,Dresden,Germany,01187
– sequence: 6
  givenname: Thomas
  surname: Mikolajick
  fullname: Mikolajick, Thomas
  organization: Chair of Nanoelectronic Materials, TU Dresden,Dresden,Germany,01062
– sequence: 7
  givenname: Stefan
  surname: Slesazeck
  fullname: Slesazeck, Stefan
  organization: NaMLab gGmbH,Dresden,Germany,01187
– sequence: 8
  givenname: Elisabetta
  surname: Chicca
  fullname: Chicca, Elisabetta
  organization: Bielefeld University,Faculty of Technology and Cluster of Excellence Cognitive Interaction Technology (CITEC),Bielefeld,Germany,33615
BookMark eNotj81KAzEUhSPoQts-gQvzAjMmmZ_kLmWotlDooroumcy9NTDNSJJZ-PYO2NXh8B0-OE_sPkwBGXuRopRSwOu-23anum2gLZWQUBpoGyHqO7YBbaRWZhlBKx_Z98lf59FmPwU-Efch4yXajIUNQ0E-Ig84xwU6H93sc-Jz8uHCd3RURW8TDpwwxglHdDl6x8njOHAkWjrP0YbkU55iWrMHsmPCzS1X7Ot9-9ntisPxY9-9HQqntMmFMVr2NSCQcFoBUC0VaSewb2qhLBpqTFtBD04bq7Xuh6qCWg-KrFC6r6oVe_73ekQ8_0R_tfH3fPtf_QEWWVb-
CitedBy_id crossref_primary_10_3389_fnins_2021_611300
crossref_primary_10_1007_s12633_024_03016_6
crossref_primary_10_1002_inf2_12380
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICECS46596.2019.8965004
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728109961
1728109965
EndPage 232
ExternalDocumentID 8965004
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-c278t-8871b49e9f0c7299f412f7c0eb5402ae8f58639b9c78a777bd33947d2fa027b33
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:58 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c278t-8871b49e9f0c7299f412f7c0eb5402ae8f58639b9c78a777bd33947d2fa027b33
OpenAccessLink https://pure.rug.nl/ws/files/132449399/08965004.pdf
PageCount 4
ParticipantIDs ieee_primary_8965004
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS)
PublicationTitleAbbrev ICECS
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8423529
Snippet Inspired by neurobiological systems, Spiking Neural Networks (SNNs) are gaining an increasing interest in the field of bio-inspired machine learning. Neurons,...
SourceID ieee
SourceType Publisher
StartPage 229
SubjectTerms ferroelectric FET (FeFET)
hafnium oxide
integrate-and-fire (I&F) neurons
leaky integration
neuromorphic circuits
Title Simulation of integrate-and-fire neuron circuits using HfO2-based ferroelectric field effect transistors
URI https://ieeexplore.ieee.org/document/8965004
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPXh023xv9lxaqlAVaqG3sp8axETS5OKvd3Y3VhQP3kIISZhZ9r1J3rxB6FqmAYeaKyImZhmxXphE5GlK0kCG2vrPcSceX9xn81Vyt07XPXSz64XRWjvxmR7ZQ_cvX1WytZ_KxjkDPmHNP_coY75Xq5NshQEb306mk2WSpcwqD0JYAv7qH2NTHGrMDtDi63leLPI6ahsxkh-_rBj_-0KHaPjdn4cfd8hzhHq6HKCXZfHWzeLClcE7HwjCS0UM7GzYeVeWWBa1bItmi63m_RnPzUNELJgpDPeuKz8Yp5DYiduwF3zgxmKasxTZDtFqNn2azEk3R4HIiOYNgX0kFAnTzAQSuDQzSRgZKgMtgK5FXOcmzYGoCCZpziE9QsUxS6iKDIeiVcTxMeqXValPENY6FhBrHogESh1FGTVCqkyanALR4PEpGtgobd69VcamC9DZ36fP0b7NlG_tu0D9pm71JWB8I65ccj8BxXKpQQ
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsAEqEV844ERt_mOPVetUmgLUlupW2U7NkSIBLXJwq_n7IQiEANbFEVJdGf5vUvevUPoVoYOh5rLI9pnETFemETQMCShI11l_Oe4FY9PZ1GyDO5X4aqF7na9MEopKz5TPXNo_-WnhazMp7I-ZcAnjPnnHvBqGtXdWo1oy3VYfzwYDuZBFDKjPXBhEdTX_xicYnFjdIimX0-s5SKvvaoUPfnxy4zxv690hLrfHXr4aYc9x6il8g56mWdvzTQuXGi8c4IgPE-Jhr0NW_fKHMtsI6us3GKjen_GiX70iIGzFMO9N0U9GieT2MrbcC35wKVBNWsqsu2i5Wi4GCSkmaRApBfTksBO4oqAKaYdCWya6cD1dCwdJYCweVxRHVKgKoLJmHJIkEh9nwVx6mkOZavw_RPUzotcnSKslC8g1twRARQ7acxiLWQaSU1joBrcP0MdE6X1e22WsW4CdP736Ru0nyymk_VkPHu4QAcma3Wj3yVql5tKXQHil-LaJvoTyWOsjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+26th+IEEE+International+Conference+on+Electronics%2C+Circuits+and+Systems+%28ICECS%29&rft.atitle=Simulation+of+integrate-and-fire+neuron+circuits+using+HfO2-based+ferroelectric+field+effect+transistors&rft.au=Suresh%2C+Bharathwaj&rft.au=Bertele%2C+Martin&rft.au=Breyer%2C+Evelyn+T.&rft.au=Klein%2C+Philipp&rft.date=2019-11-01&rft.pub=IEEE&rft.spage=229&rft.epage=232&rft_id=info:doi/10.1109%2FICECS46596.2019.8965004&rft.externalDocID=8965004