Simulation of integrate-and-fire neuron circuits using HfO2-based ferroelectric field effect transistors
Inspired by neurobiological systems, Spiking Neural Networks (SNNs) are gaining an increasing interest in the field of bio-inspired machine learning. Neurons, as central processing and short-term memory units of biological neural systems, are thus at the forefront of cutting-edge research approaches...
Saved in:
Published in | 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS) pp. 229 - 232 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Inspired by neurobiological systems, Spiking Neural Networks (SNNs) are gaining an increasing interest in the field of bio-inspired machine learning. Neurons, as central processing and short-term memory units of biological neural systems, are thus at the forefront of cutting-edge research approaches. The realization of CMOS circuits replicating neuronal features, namely the integration of action potentials and firing according to the all-or-nothing law, imposes various challenges like large area and power consumption. The non-volatile storage of polarization states and accumulative switching behavior of nanoscale HfO 2 - based Ferroelectric Field-Effect Transistors (FeFETs), promise to circumvent these issues. In this paper, we propose two FeFET-based neuronal circuits emulating the Integrate-and-Fire (I&F) behavior of biological neurons on the basis of SPICE simulations. Additionally, modulating the depolarization of the FeFETs enables the replication of a biology-based concept known as membrane leakage. The presented capacitor-free implementation is crucial for the development of neuromorphic systems that allow more complex features at a given area and power constraint. |
---|---|
DOI: | 10.1109/ICECS46596.2019.8965004 |