Characterising the d-axis machine model of a turbogenerator using finite elements
An analysis of a long established fundamental assumption is presented. The assumption that superposition is valid in frequency response derived models is shown to be wrong, because eddy current losses in the solid rotor cannot be superimposed in the machine direct-axis. This implies that network the...
Saved in:
Published in | IEEE transactions on energy conversion Vol. 14; no. 3; pp. 340 - 346 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An analysis of a long established fundamental assumption is presented. The assumption that superposition is valid in frequency response derived models is shown to be wrong, because eddy current losses in the solid rotor cannot be superimposed in the machine direct-axis. This implies that network theory is not valid in characterising the d-axis machine model. A machine model structure with one damper winding in the d-axis is derived from finite element analysis. Unequal mutual inductances in the machine d-axis are determined and hence the so-called differential leakage inductances are found and they are frequency dependent. The study is made on a 150 MVA turbine generator by simulating the standstill frequency response test with finite elements. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0885-8969 1558-0059 |
DOI: | 10.1109/60.790880 |