Benchmarking and survey of explanation methods for black box models
The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how these models work in an understandable way to users and decision makers. Unsurprisingly, the state-of-the-art exhibits currently a plethora of...
Saved in:
Published in | Data mining and knowledge discovery Vol. 37; no. 5; pp. 1719 - 1778 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how these models work in an understandable way to users and decision makers. Unsurprisingly, the state-of-the-art exhibits currently a plethora of explainers providing many different types of explanations. With the aim of providing a compass for researchers and practitioners, this paper proposes a categorization of explanation methods from the perspective of the type of explanation they return, also considering the different input data formats. The paper accounts for the most representative explainers to date, also discussing similarities and discrepancies of returned explanations through their visual appearance. A companion website to the paper is provided as a continuous update to new explainers as they appear. Moreover, a subset of the most robust and widely adopted explainers, are benchmarked with respect to a repertoire of quantitative metrics. |
---|---|
AbstractList | The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how these models work in an understandable way to users and decision makers. Unsurprisingly, the state-of-the-art exhibits currently a plethora of explainers providing many different types of explanations. With the aim of providing a compass for researchers and practitioners, this paper proposes a categorization of explanation methods from the perspective of the type of explanation they return, also considering the different input data formats. The paper accounts for the most representative explainers to date, also discussing similarities and discrepancies of returned explanations through their visual appearance. A companion website to the paper is provided as a continuous update to new explainers as they appear. Moreover, a subset of the most robust and widely adopted explainers, are benchmarked with respect to a repertoire of quantitative metrics. |
Author | Naretto, Francesca Pedreschi, Dino Guidotti, Riccardo Bodria, Francesco Giannotti, Fosca Rinzivillo, Salvatore |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0001-9583-3897 surname: Bodria fullname: Bodria, Francesco email: francesco.bodria@sns.it organization: Scuola Normale Superiore – sequence: 2 givenname: Fosca surname: Giannotti fullname: Giannotti, Fosca organization: Scuola Normale Superiore – sequence: 3 givenname: Riccardo surname: Guidotti fullname: Guidotti, Riccardo organization: University of Pisa – sequence: 4 givenname: Francesca surname: Naretto fullname: Naretto, Francesca email: francesca.naretto@sns.it organization: Scuola Normale Superiore – sequence: 5 givenname: Dino surname: Pedreschi fullname: Pedreschi, Dino organization: University of Pisa – sequence: 6 givenname: Salvatore surname: Rinzivillo fullname: Rinzivillo, Salvatore organization: ISTI-CNR |
BookMark | eNp9kE9LAzEQxYNUsK1-AU8Bz9FJsptkj1r8B4IXBW8h3WTbbbdJTbbSfntjKwgeepo5zO-9eW-EBj54h9AlhWsKIG8SBUEVAcYJQMU5qU7QkJaSE1mKj0HeuSpIqSicoVFKCwAoGYchmtw5X89XJi5bP8PGW5w28cvtcGiw2647403fBo9Xrp8Hm3ATIp52pl7iadjiVbCuS-fotDFdche_c4zeH-7fJk_k5fXxeXL7QmomVUWoEgYcVVyJmlrOVOFk0yjbSGbZlAtaOQtCSV4oDkVVSeacsGCpKZvaCsrH6Oqgu47hc-NSrxdhE3221EyVnHKWpfMVO1zVMaQUXaPXsc0Bd5qC_ilLH8rSuSy9L0tXGVL_oLrt98n7aNruOMoPaMo-fubi31dHqG84H38_ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3409843 crossref_primary_10_3390_electronics14030571 crossref_primary_10_3390_computers14010030 crossref_primary_10_1145_3701740 crossref_primary_10_1145_3702651 crossref_primary_10_3389_fpace_2024_1475139 crossref_primary_10_1109_TPAMI_2023_3241106 crossref_primary_10_1016_j_arr_2024_102617 crossref_primary_10_1002_aesr_202300157 crossref_primary_10_3390_electronics14050987 crossref_primary_10_1002_2056_4538_70023 crossref_primary_10_1021_acs_jctc_4c01347 crossref_primary_10_1080_10447318_2024_2364986 crossref_primary_10_1109_ACCESS_2024_3496114 crossref_primary_10_1016_j_jad_2025_01_136 crossref_primary_10_1007_s42484_025_00253_9 crossref_primary_10_1016_j_engappai_2025_110142 crossref_primary_10_1016_j_neucom_2025_129379 crossref_primary_10_3390_make6020038 crossref_primary_10_1109_TCAD_2022_3197508 crossref_primary_10_1016_j_inffus_2024_102923 crossref_primary_10_3389_fonc_2024_1419621 crossref_primary_10_1007_s10618_024_01041_y crossref_primary_10_1007_s13198_024_02650_y crossref_primary_10_1007_s41060_024_00636_4 crossref_primary_10_1093_bib_bbae593 crossref_primary_10_1016_j_ijar_2024_109206 crossref_primary_10_1016_j_inffus_2024_102782 crossref_primary_10_1038_s41598_024_82501_9 crossref_primary_10_3390_app14051811 crossref_primary_10_1007_s11432_024_4123_4 crossref_primary_10_1007_s12559_024_10272_6 crossref_primary_10_1016_j_techfore_2024_123499 crossref_primary_10_3390_asi7060121 crossref_primary_10_1016_j_enbuild_2024_114434 crossref_primary_10_1145_3624480 crossref_primary_10_1109_ACCESS_2024_3498907 crossref_primary_10_1007_s10462_024_10916_x crossref_primary_10_1016_j_irfa_2024_103147 crossref_primary_10_1109_ACCESS_2025_3537459 crossref_primary_10_1109_JSTARS_2024_3462537 crossref_primary_10_1007_s12559_024_10332_x |
Cites_doi | 10.1145/3394486.3403085 10.32614/CRAN.package.sbrl 10.3390/electronics8080832 10.1007/978-3-030-28954-6 10.5220/0010840500003123 10.1016/j.dss.2011.12.014 10.1109/TKDE.2007.190734 10.1109/IJCNN52387.2021.9534369 10.1145/3447548.3467265 10.1093/comjnl/bxl018 10.1561/9781680836592 10.1214/15-AOAS848 10.1609/aaai.v34i09.7116 10.25300/MISQ/2014/38.1.04 10.1145/3366423.3380087 10.1016/j.eswa.2020.113829 10.1089/big.2016.0007 10.1016/j.artint.2021.103457 10.24963/ijcai.2021/396 10.1145/3491102.3502104 10.1613/jair.4496 10.18653/v1/D17-1161 10.1016/j.imavis.2019.02.005 10.1016/j.artint.2018.07.007 10.1145/2939672.2939874 10.1007/978-3-030-61527-7_24 10.24963/ijcai.2020/63 10.18653/v1/2022.acl-long.213 10.1145/2876034.2876042 10.1145/2939672.2939778 10.1214/11-AOAS495 10.24963/ijcai.2019/876 10.1109/CogMI50398.2020.00029 10.18653/v1/2021.acl-long.523 10.18653/v1/2020.acl-demos.22 10.18653/v1/W17-5221 10.4159/harvard.9780674736061 10.23919/MIPRO.2018.8400040 10.24963/ijcai.2020/395 10.24963/ijcai.2021/409 10.1007/s10044-021-01055-y 10.1609/aaai.v35i15.17594 10.1145/3412815.3416893 10.1609/aaai.v35i13.17377 10.1109/CVPRW50498.2020.00020 10.1089/big.2016.0047 10.1109/CVPR46437.2021.01469 10.1017/S1431927616003536 10.1073/pnas.1900654116 10.1109/DSAA.2018.00018 10.1007/978-81-322-3972-7_19 10.1109/TVCG.2018.2864812 10.1145/3375627.3375850 10.1145/3236009 10.1145/775047.775113 10.1109/ICCV.2019.00304 10.1609/aaai.v32i1.11491 10.18653/v1/D19-5308 10.1145/3351095.3372850 10.1371/journal.pone.0130140 10.1007/978-3-030-43823-4_23 10.1109/WACV45572.2020.9093360 10.1007/s10618-022-00831-6 10.18653/v1/N19-1337 10.1016/j.jbusres.2019.07.039 10.1109/MIS.2019.2957223 10.1109/TNNLS.2020.2978386 10.1109/ICDM.2019.00036 10.1037/xlm0000756 10.1109/IJCNN48605.2020.9206626 10.1007/s11263-019-01228-7 10.1109/ICCV.2019.00505 10.1214/07-AOAS148 10.1145/3351095.3372824 10.2139/ssrn.4476687 10.3233/IDA-1998-2303 10.18653/v1/P19-1487 10.1145/2594473.2594475 10.18653/v1/2022.emnlp-main.484 10.1007/978-3-030-28730-6_4 10.1016/j.knosys.2017.02.023 10.1007/978-3-030-46150-8_12 10.1016/j.knosys.2020.105532 10.1038/s41467-019-08987-4 10.1007/978-3-030-43823-4_14 10.1038/s42256-019-0048-x 10.1016/j.artint.2020.103428 10.1109/ACCESS.2022.3207765 10.1109/ICCV48922.2021.00073 10.1145/3351095.3372855 10.1109/WACV.2018.00097 10.18653/v1/2020.acl-main.491 10.1109/CVPR52688.2022.01002 10.1145/3531146.3533112 10.1145/3306618.3314273 10.18653/v1/D16-1053 10.18653/v1/D17-2011 10.2139/ssrn.3063289 10.1109/TIT.1967.1053964 10.1007/978-1-4614-3223-4_6 10.2139/ssrn.878283 10.1109/ACCESS.2018.2870052 10.1007/978-3-030-33607-3_49 10.1287/moor.12.2.262 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-023-00933-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 1778 |
ExternalDocumentID | 10_1007_s10618_023_00933_9 |
GrantInformation_xml | – fundername: H2020 European Research Council grantid: 834756 funderid: http://dx.doi.org/10.13039/100010663 – fundername: H2020 Excellent Science grantid: 871042 funderid: http://dx.doi.org/10.13039/100010662 – fundername: H2020 LEIT Information and Communication Technologies grantid: 952026; 952215 funderid: http://dx.doi.org/10.13039/100010669 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c2789-186a0e18386c1d3284e7ff8df72d2b3619ed06873483049972ee6d0d1a5fcd613 |
IEDL.DBID | C6C |
ISSN | 1384-5810 |
IngestDate | Sat Aug 23 13:52:16 EDT 2025 Tue Jul 01 00:40:33 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Fri Feb 21 02:43:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Explainable artificial intelligence Interpretable machine learning Benchmarking Transparent models |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2789-186a0e18386c1d3284e7ff8df72d2b3619ed06873483049972ee6d0d1a5fcd613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9583-3897 |
OpenAccessLink | https://doi.org/10.1007/s10618-023-00933-9 |
PQID | 2853132386 |
PQPubID | 43030 |
PageCount | 60 |
ParticipantIDs | proquest_journals_2853132386 crossref_primary_10_1007_s10618_023_00933_9 crossref_citationtrail_10_1007_s10618_023_00933_9 springer_journals_10_1007_s10618_023_00933_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230900 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Artelt A, Hammer B (2019) On the computation of counterfactual explanations—a survey. arXiv preprint arXiv:1911.07749 Jain S, Wallace BC (2019) Attention is not explanation. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, NAACL-HLT 2019, Minneapolis, MN, USA, vol. 1 (long and short papers) Katehakis Jr MN, Veinott AF (1987) The multi-armed bandit problem: decomposition and computation. Math Oper Res Yeh C, Kim B, Arik SÖ, et al (2020) On completeness-aware concept-based explanations in deep neural networks. In: Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, virtual Pawelczyk M, Broelemann K, Kasneci G (2020) Learning model-agnostic counterfactual explanations for tabular data. In: WWW ’20: the web conference 2020, Taipei, Taiwan Guidotti R, Monreale A, Giannotti F, et al (2019a) Factual and counterfactual explanations for black box decision making. IEEE Intell Syst Guidotti R (2021) Evaluating local explanation methods on ground truth. Artif Intell Guidotti R, Monreale A, Matwin S, et al (2020a) Explaining image classifiers generating exemplars and counter-exemplars from latent representations. In: The thirty-fourth AAAI conference on artificial intelligence, AAAI 2020, the thirty-second innovative applications of artificial intelligence conference, IAAI 2020, the tenth AAAI symposium on educational advances in artificial intelligence, EAAI 2020, New York, NY, USA Hvilshøj F, Iosifidis A, Assent I (2021) ECINN: efficient counterfactuals from invertible neural networks. In: BMVC. BMVA Press, p 43 Panigutti C, Perotti A, Pedreschi D (2020) Doctor XAI: an ontology-based approach to black-box sequential data classification explanations. In: FAT* ’20: conference on fairness, accountability, and transparency, Barcelona, Spain Rajani NF, McCann B, Xiong C, et al (2019) Explain yourself! Leveraging language models for commonsense reasoning. In: Proceedings of the 57th conference of the association for computational linguistics, ACL 2019, Florence, Italy, vol 1: long papers Došilović FK, Brčić M, Hlupić N (2018) Explainable artificial intelligence: a survey. In: 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO), IEEE, pp 0210–0215 Fong R, Patrick M, Vedaldi A (2019) Understanding deep networks via extremal perturbations and smooth masks. In: 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South) Pasquale F (2015) The black box society: the secret algorithms that control money and information. Harvard University Press MurdochWJSinghCKumbierKDefinitions, methods, and applications in interpretable machine learningProc Natl Acad Sci2019116442207122080403058410.1073/pnas.19006541161431.62266 Goyal Y, Shalit U, Kim B (2019) Explaining classifiers with causal concept effect (cace). arXiv preprint arXiv:1907.07165 Chemmengath SA, Azad AP, Luss R, et al (2022) Let the CAT out of the bag: Contrastive attributed explanations for text. In: Proceedings of the 2022 conference on empirical methods in natural language processing, EMNLP 2022, Abu Dhabi, United Arab Emirates Chen J, Song L, Wainwright MJ, et al (2018) Learning to explain: an information-theoretic perspective on model interpretation. In: Proceedings of the 35th international conference on machine learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden Goebel R, Chander A, Holzinger K, et al (2018) Explainable AI: the new 42? In: Machine learning and knowledge extraction—second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 international cross-domain conference, CD-MAKE 2018, Hamburg, Germany, Proceedings Dash S, Günlük O, Wei D (2018) Boolean decision rules via column generation. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada Apley DW, Zhu J (2016) Visualizing the effects of predictor variables in black box supervised learning models. arXiv preprint arXiv:1612.08468 BachSBinderAMontavonGOn pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagationPLoS One201510710.1371/journal.pone.0130140 HastieTJTibshiraniRJGeneralized additive models1990CRC Press0747.62061 Ley D, Mishra S, Magazzeni D (2022) Global counterfactual explanations: investigations, implementations and improvements. In: ICLR 2022 workshop on PAIR∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge $$\end{document}2Struct: privacy, accountability, interpretability, robustness, reasoning on structured data. https://openreview.net/forum?id=Btbgp0dOWZ9 Kanamori K, Takagi T, Kobayashi K, et al (2020) DACE: distribution-aware counterfactual explanation by mixed-integer linear optimization. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI 2020 Miller T (2019) Explanation in artificial intelligence: insights from the social sciences. Artif Intell FreitasAAComprehensible classification models: a position paperSIGKDD Explor201315111010.1145/2594473.2594475 Smilkov D, Thorat N, Kim B, et al (2017) Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 Hoover B, Strobelt H, Gehrmann S (2019) exbert: a visual analysis tool to explore learned representations in transformers models. arXiv preprint arXiv:1910.05276 Martens D, Provost FJ (2014) Explaining data-driven document classifications. MIS Q Kenny EM, Keane MT (2021) On generating plausible counterfactual and semi-factual explanations for deep learning. In: AAAI. AAAI Press, pp 11575–11585 Aggarwal CC, Zhai C (2012) A survey of text classification algorithms. In: Mining text data. Springer, pp 163–222 Huang Q, Yamada M, Tian Y, et al (2020) Graphlime: local interpretable model explanations for graph neural networks. arXiv preprint arXiv:2001.06216 Yang M, Kim B (2019) BIM: towards quantitative evaluation of interpretability methods with ground truth. arXiv preprint arXiv:1907.09701 Schwab P, Karlen W (2019) Cxplain: causal explanations for model interpretation under uncertainty. In: Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, Vancouver, BC, Canada Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW Boz O (2002) Extracting decision trees from trained neural networks. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, Edmonton, Alberta, Canada Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory Lipovetsky S (2022) Explanatory model analysis: Explore, explain and examine predictive models, by Przemyslaw Biecek, Tomasz Burzykowski, Boca Raton, FL, Chapman and Hall/CRC, Taylor & Francis Group, 2021, xiii + 311 pp., \$ 79.96 (hbk), ISBN 978-0-367-13559-1. Technometrics Hind M, Wei D, Campbell M, et al (2019) TED: teaching AI to explain its decisions. In: Proceedings of the 2019 AAAI/ACM conference on AI, ethics, and society, AIES 2019, Honolulu, HI, USA Selvaraju RR, Cogswell M, Das A, et al (2020) Grad-cam: Visual explanations from deep networks via gradient-based localization. Int J Comput Vis Craven MW, Shavlik JW (1995) Extracting tree-structured representations of trained networks. In: Advances in neural information processing systems 8, NIPS, Denver, CO, USA Li O, Liu H, Chen C, et al (2018) Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. In: Proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA Lee Y, Wei C, Cheng T, et al (2012) Nearest-neighbor-based approach to time-series classification. Decis Support Syst Suissa-Peleg A, Haehn D, Knowles-Barley S, et al (2016) Automatic neural reconstruction from petavoxel of electron microscopy data. Microsc Microanal Kim B, Koyejo O, Khanna R (2016) Examples are not enough, learn to criticize! criticism for interpretability. In: Advances in neural information processing systems 29: annual conference on neural information processing systems 2016, Barcelona, Spain Chipman H, George E, McCulloh R (1998) Making sense of a forest of trees. Comput Sci Stat Lakkaraju H, Bach SH, Leskovec J (2016) Interpretable decision sets: a joint framework for description and prediction. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, USA Ming Y, Qu H, Bertini E (2019) Rulematrix: visualizing and understanding classifiers with rules. IEEE Trans Vis Comput Graph Shi S, Zhang X, Fan W (2020) A modified perturbed sampling method for local interpretable model-agnostic explanation. arXiv preprint arXiv:2002.07434 Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: 5th International conference on learning representations, ICLR 2017, Toulon, France, conference track proceedings Zafar MR, Khan NM (2019) DLIME: a deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems. arXiv preprint arXiv:1906.10263 Arras L, Montavon G, Müller K, et al (2017) Explaining recurrent neura 933_CR115 933_CR118 933_CR117 933_CR119 933_CR53 933_CR50 933_CR121 933_CR120 933_CR123 933_CR57 933_CR122 933_CR54 933_CR125 933_CR55 933_CR124 933_CR58 933_CR59 WJ Murdoch (933_CR116) 2019; 116 933_CR105 933_CR104 933_CR107 933_CR106 933_CR109 933_CR108 933_CR41 933_CR42 933_CR110 933_CR40 933_CR45 933_CR112 933_CR46 933_CR111 933_CR43 933_CR114 933_CR113 933_CR49 S Bramhall (933_CR21) 2020; 3 933_CR47 933_CR48 S Bach (933_CR16) 2015; 10 933_CR30 933_CR31 933_CR34 933_CR101 933_CR35 933_CR100 933_CR32 933_CR103 933_CR33 933_CR102 933_CR38 933_CR39 933_CR36 TJ Hastie (933_CR70) 1990 933_CR37 RM Byrne (933_CR23) 2020; 46 933_CR174 933_CR20 933_CR173 933_CR176 933_CR175 933_CR24 933_CR177 DV Carvalho (933_CR26) 2019; 8 933_CR22 933_CR27 933_CR28 933_CR25 933_CR170 933_CR29 933_CR172 933_CR171 933_CR9 933_CR6 933_CR5 933_CR8 933_CR7 933_CR159 933_CR92 H Snyder (933_CR150) 2019; 104 933_CR93 933_CR90 933_CR91 933_CR96 933_CR163 933_CR97 933_CR162 933_CR94 933_CR165 933_CR95 933_CR164 933_CR12 933_CR167 933_CR13 933_CR166 933_CR10 933_CR98 933_CR169 933_CR11 AA Freitas (933_CR51) 2013; 15 M Gleicher (933_CR56) 2016; 4 933_CR99 933_CR168 933_CR17 933_CR14 933_CR15 933_CR18 933_CR161 933_CR19 T Vermeire (933_CR160) 2022; 25 933_CR149 933_CR148 933_CR81 933_CR82 933_CR80 933_CR85 933_CR152 933_CR86 933_CR151 933_CR83 933_CR154 933_CR84 933_CR153 933_CR89 933_CR156 933_CR155 933_CR87 933_CR158 933_CR88 933_CR157 J Friedman (933_CR52) 2008; 2 933_CR138 933_CR137 933_CR139 933_CR71 933_CR74 933_CR141 933_CR75 933_CR140 933_CR72 933_CR143 933_CR73 933_CR142 933_CR78 933_CR145 933_CR79 933_CR144 933_CR76 933_CR147 933_CR77 933_CR146 PM Domingos (933_CR44) 1998; 2 933_CR127 933_CR126 933_CR129 933_CR128 933_CR60 933_CR63 933_CR130 933_CR64 933_CR61 933_CR132 933_CR62 933_CR131 933_CR67 933_CR134 933_CR68 933_CR133 933_CR65 933_CR136 933_CR66 933_CR135 933_CR2 933_CR1 933_CR4 933_CR69 933_CR3 |
References_xml | – reference: Arras L, Montavon G, Müller K, et al (2017) Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the 8th workshop on computational approaches to subjectivity, sentiment and social media analysis, WASSA@EMNLP 2017, Copenhagen, Denmark – reference: Kurenkov A (2020) Lessons from the pulse model and discussion. The gradient – reference: Luss R, Chen P, Dhurandhar A, et al (2021) Leveraging latent features for local explanations. In: KDD ’21: the 27th ACM SIGKDD conference on knowledge discovery and data mining, virtual event, Singapore – reference: Rajani NF, McCann B, Xiong C, et al (2019) Explain yourself! Leveraging language models for commonsense reasoning. In: Proceedings of the 57th conference of the association for computational linguistics, ACL 2019, Florence, Italy, vol 1: long papers – reference: Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW – reference: Li J, Monroe W, Jurafsky D (2016) Understanding neural networks through representation erasure. arXiv preprint arXiv:1612.08220 – reference: Chemmengath SA, Azad AP, Luss R, et al (2022) Let the CAT out of the bag: Contrastive attributed explanations for text. In: Proceedings of the 2022 conference on empirical methods in natural language processing, EMNLP 2022, Abu Dhabi, United Arab Emirates – reference: Erion GG, Janizek JD, Sturmfels P, et al (2019) Learning explainable models using attribution priors. arXiv preprint arXiv:1906.10670 – reference: Boz O (2002) Extracting decision trees from trained neural networks. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, Edmonton, Alberta, Canada – reference: Kim B, Koyejo O, Khanna R (2016) Examples are not enough, learn to criticize! criticism for interpretability. In: Advances in neural information processing systems 29: annual conference on neural information processing systems 2016, Barcelona, Spain – reference: Nauta M, van Bree R, Seifert C (2021) Neural prototype trees for interpretable fine-grained image recognition. In: CVPR. Computer vision foundation/IEEE, pp 14933–14943 – reference: Renard X, Woloszko N, Aigrain J, et al (2019) Concept tree: high-level representation of variables for more interpretable surrogate decision trees. arXiv preprint arXiv:1906.01297 – reference: Robnik-Šikonja M, Kononenko I (2008) Explaining classifications for individual instances. IEEE Trans Knowl Data Eng 20(5) – reference: Byrne RM (2019) Counterfactuals in explainable artificial intelligence (XAI): evidence from human reasoning. In: IJCAI, pp 6276–6282 – reference: Lakkaraju H, Bach SH, Leskovec J (2016) Interpretable decision sets: a joint framework for description and prediction. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, USA – reference: Hartmann Y, Liu H, Lahrberg S, et al (2022) Interpretable high-level features for human activity recognition. In: Proceedings of the 15th international joint conference on biomedical engineering systems and technologies, BIOSTEC 2022, vol. 4: BIOSIGNALS, Online Streaming – reference: Pan D, Li X, Zhu D (2021) Explaining deep neural network models with adversarial gradient integration. In: Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI 2021, virtual event/Montreal, Canada – reference: Rojat T, Puget R, Filliat D, et al (2021) Explainable artificial intelligence (XAI) on timeseries data: a survey. arXiv preprint arXiv:2104.00950 – reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 3rd International conference on learning representations, ICLR 2015, San Diego, CA, USA, Conference track proceedings – reference: Calamoneri T (2006) The L(h, k)-labelling problem: a survey and annotated bibliography. Comput J – reference: Goebel R, Chander A, Holzinger K, et al (2018) Explainable AI: the new 42? In: Machine learning and knowledge extraction—second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 international cross-domain conference, CD-MAKE 2018, Hamburg, Germany, Proceedings – reference: Albini E, Rago A, Baroni P, et al (2020) Relation-based counterfactual explanations for bayesian network classifiers. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI 2020 – reference: Hind M, Wei D, Campbell M, et al (2019) TED: teaching AI to explain its decisions. In: Proceedings of the 2019 AAAI/ACM conference on AI, ethics, and society, AIES 2019, Honolulu, HI, USA – reference: Dash S, Günlük O, Wei D (2018) Boolean decision rules via column generation. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada – reference: Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: 5th International conference on learning representations, ICLR 2017, Toulon, France, conference track proceedings – reference: Theissler A (2017) Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection. Knowl Based Syst – reference: Xu K, Ba J, Kiros R, et al (2015) Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd international conference on machine learning, ICML 2015, Lille, France – reference: Wu T, Ribeiro MT, Heer J, et al (2021a) Polyjuice: generating counterfactuals for explaining, evaluating, and improving models. In: Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing, ACL/IJCNLP 2021, (vol 1: long papers), virtual event – reference: BramhallSHornHTieuMQlime-a quadratic local interpretable model-agnostic explanation approachSMU Data Sci Rev2020314 – reference: Tan S, Soloviev M, Hooker G, et al (2020) Tree space prototypes: another look at making tree ensembles interpretable. In: FODS ’20: ACM-IMS foundations of data science conference, virtual event, USA – reference: Agarwal R, Melnick L, Frosst N, et al (2021) Neural additive models: Interpretable machine learning with neural nets. In: Advances in neural information processing systems 34: annual conference on neural information processing systems 2021, NeurIPS 2021, virtual – reference: Lipovetsky S (2022) Explanatory model analysis: Explore, explain and examine predictive models, by Przemyslaw Biecek, Tomasz Burzykowski, Boca Raton, FL, Chapman and Hall/CRC, Taylor & Francis Group, 2021, xiii + 311 pp., \$ 79.96 (hbk), ISBN 978-0-367-13559-1. Technometrics – reference: Desai S, Ramaswamy HG (2020) Ablation-cam: visual explanations for deep convolutional network via gradient-free localization. In: IEEE winter conference on applications of computer vision, WACV 2020, Snowmass Village, CO, USA – reference: Lucic A, Haned H, de Rijke M (2020) Why does my model fail?: Contrastive local explanations for retail forecasting. In: FAT* ’20: conference on fairness, accountability, and transparency, Barcelona, Spain – reference: Madaan N, Padhi I, Panwar N, et al (2021) Generate your counterfactuals: towards controlled counterfactual generation for text. In: Thirty-fifth AAAI conference on artificial intelligence, AAAI 2021, thirty-third conference on innovative applications of artificial intelligence, IAAI 2021, the eleventh symposium on educational advances in artificial intelligence, EAAI 2021, virtual event – reference: Martens D, Baesens B, Gestel TV, et al (2007) Comprehensible credit scoring models using rule extraction from support vector machines. Eur J Oper Res – reference: Martens D, Provost FJ (2014) Explaining data-driven document classifications. MIS Q – reference: ElShawi R, Sherif Y, Al-Mallah M, et al (2019) Ilime: local and global interpretable model-agnostic explainer of black-box decision. In: European conference on advances in databases and information systems. Springer, pp 53–68 – reference: Arya V, Bellamy RKE, Chen P, et al (2019) One explanation does not fit all: A toolkit and taxonomy of AI explainability techniques. arXiv preprint arXiv:1909.03012 – reference: Guidotti R, Monreale A, Ruggieri S, et al (2019c) A survey of methods for explaining black box models. ACM Comput Surv – reference: Setzu M, Guidotti R, Monreale A, et al (2021) Glocalx—from local to global explanations of black box AI models. Artif Intell – reference: Guidotti R, Monreale A, Matwin S, et al (2020a) Explaining image classifiers generating exemplars and counter-exemplars from latent representations. In: The thirty-fourth AAAI conference on artificial intelligence, AAAI 2020, the thirty-second innovative applications of artificial intelligence conference, IAAI 2020, the tenth AAAI symposium on educational advances in artificial intelligence, EAAI 2020, New York, NY, USA – reference: Kenny EM, Keane MT (2021) On generating plausible counterfactual and semi-factual explanations for deep learning. In: AAAI. AAAI Press, pp 11575–11585 – reference: Miller T (2019) Explanation in artificial intelligence: insights from the social sciences. Artif Intell – reference: Donnelly J, Barnett AJ, Chen C (2022) Deformable protopnet: an interpretable image classifier using deformable prototypes. In: CVPR. IEEE, pp 10255–10265 – reference: Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. In: Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, Long Beach, CA, USA – reference: Yuan H, Tang J, Hu X, et al (2020a) XGNN: towards model-level explanations of graph neural networks. In: KDD ’20: the 26th ACM SIGKDD conference on knowledge discovery and data mining, virtual event, CA, USA, August (2020) – reference: Bien J, Tibshirani R (2011) Prototype selection for interpretable classification. Ann Appl Stat 2403–2424 – reference: Peltola T (2018) Local interpretable model-agnostic explanations of Bayesian predictive models via Kullback–Leibler projections. arXiv preprint arXiv:1810.02678 – reference: Apley DW, Zhu J (2016) Visualizing the effects of predictor variables in black box supervised learning models. arXiv preprint arXiv:1612.08468 – reference: Alvarez-Melis D, Jaakkola TS (2018) Towards robust interpretability with self-explaining neural networks. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada – reference: Yang H, Rudin C, Seltzer MI (2017) Scalable Bayesian rule lists. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia – reference: Lundberg SM, Lee S (2017) A unified approach to interpreting model predictions. In: Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, Long Beach, CA, USA – reference: Chouldechova A (2017) Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data – reference: BachSBinderAMontavonGOn pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagationPLoS One201510710.1371/journal.pone.0130140 – reference: Hoover B, Strobelt H, Gehrmann S (2019) exbert: a visual analysis tool to explore learned representations in transformers models. arXiv preprint arXiv:1910.05276 – reference: Poyiadzi R, Sokol K, Santos-Rodríguez R, et al (2020) FACE: feasible and actionable counterfactual explanations. In: AIES ’20: AAAI/ACM conference on AI, ethics, and society, New York, NY, USA – reference: Kapishnikov A, Bolukbasi T, Viégas FB, et al (2019) XRAI: better attributions through regions. In: 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South) – reference: Kim B, Chacha CM, Shah JA (2015) Inferring team task plans from human meetings: a generative modeling approach with logic-based prior. J Artif Intell Res – reference: Das A, Gupta C, Kovatchev V, et al (2022) Prototex: explaining model decisions with prototype tensors. In: Proceedings of the 60th annual meeting of the association for computational linguistics (vol. 1: long papers), ACL 2022, Dublin, Ireland – reference: Cheng J, Dong L, Lapata M (2016) Long short-term memory-networks for machine reading. In: Proceedings of the 2016 conference on empirical methods in natural language processing, EMNLP 2016, Austin, Texas, USA – reference: Chowdhury T, Rahimi R, Allan J (2022) Equi-explanation maps: concise and informative global summary explanations. In: 2022 ACM conference on fairness, accountability, and transparency, FAccT ’22 – reference: Koh PW, Liang P (2017) Understanding black-box predictions via influence functions. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia – reference: Pezeshkpour P, Tian Y, Singh S (2019) Investigating robustness and interpretability of link prediction via adversarial modifications. In: 1st Conference on automated knowledge base construction, AKBC 2019, Amherst, MA, USA – reference: Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia – reference: Katehakis Jr MN, Veinott AF (1987) The multi-armed bandit problem: decomposition and computation. Math Oper Res – reference: Zhang Y, Chen X (2020) Explainable recommendation: a survey and new perspectives. Found Trends Inf Retr – reference: Karimi A, Barthe G, Balle B, et al (2020a) Model-agnostic counterfactual explanations for consequential decisions. In: The 23rd international conference on artificial intelligence and statistics, AISTATS 2020, Online [Palermo, Sicily, Italy] – reference: Guidotti R, Monreale A, Giannotti F, et al (2019a) Factual and counterfactual explanations for black box decision making. IEEE Intell Syst – reference: Kamakshi V, Gupta U, Krishnan NC (2021) PACE: posthoc architecture-agnostic concept extractor for explaining CNNs. In: International joint conference on neural networks, IJCNN 2021, Shenzhen, China – reference: Kanamori K, Takagi T, Kobayashi K, et al (2020) DACE: distribution-aware counterfactual explanation by mixed-integer linear optimization. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI 2020 – reference: Mothilal RK, Sharma A, Tan C (2020) Explaining machine learning classifiers through diverse counterfactual explanations. In: FAT* ’20: conference on fairness, accountability, and transparency, Barcelona, Spain – reference: Yeh C, Kim B, Arik SÖ, et al (2020) On completeness-aware concept-based explanations in deep neural networks. In: Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, virtual – reference: Zhang H, Torres F, Sicre R, et al (2023) Opti-cam: optimizing saliency maps for interpretability. CoRR arXiv:2301.07002 – reference: Petsiuk V, Das A, Saenko K (2018) RISE: randomized input sampling for explanation of black-box models. In: British machine vision conference 2018, BMVC 2018, Newcastle, UK – reference: Anjomshoae S, Najjar A, Calvaresi D, et al (2019) Explainable agents and robots: Results from a systematic literature review. In: Proceedings of the 18th international conference on autonomous agents and multiagent systems, AAMAS ’19, Montreal, QC, Canada – reference: Guidotti R (2021) Evaluating local explanation methods on ground truth. Artif Intell – reference: Chen C, Li O, Tao D, et al (2019) This looks like that: deep learning for interpretable image recognition. In: Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, Vancouver, BC, Canada – reference: Yuan H, Yu H, Gui S, et al (2020b) Explainability in graph neural networks: a taxonomic survey. arXiv preprint arXiv:2012.15445 – reference: Pasquale F (2015) The black box society: the secret algorithms that control money and information. Harvard University Press – reference: FreitasAAComprehensible classification models: a position paperSIGKDD Explor201315111010.1145/2594473.2594475 – reference: Suissa-Peleg A, Haehn D, Knowles-Barley S, et al (2016) Automatic neural reconstruction from petavoxel of electron microscopy data. Microsc Microanal – reference: Williams JJ, Kim J, Rafferty AN, et al (2016) AXIS: generating explanations at scale with learnersourcing and machine learning. In: Proceedings of the third ACM conference on learning @ Scale, L@S 2016, Edinburgh, Scotland, UK – reference: Karimi A, Barthe G, Schölkopf B, et al (2020b) A survey of algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv preprint arXiv:2010.04050 – reference: Schwab P, Karlen W (2019) Cxplain: causal explanations for model interpretation under uncertainty. In: Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, Vancouver, BC, Canada – reference: Abujabal A, Roy RS, Yahya M, et al (2017) QUINT: interpretable question answering over knowledge bases. In: Proceedings of the 2017 conference on empirical methods in natural language processing, EMNLP 2017, Copenhagen, Denmark—system demonstrations – reference: Lampridis O, Guidotti R, Ruggieri S (2020) Explaining sentiment classification with synthetic exemplars and counter-exemplars. In: Discovery science—23rd international conference, DS 2020, Thessaloniki, Greece, Proceedings – reference: Geler Z, Kurbalija V, Ivanovic M, et al (2020) Weighted KNN and constrained elastic distances for time-series classification. Expert Syst Appl – reference: Došilović FK, Brčić M, Hlupić N (2018) Explainable artificial intelligence: a survey. In: 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO), IEEE, pp 0210–0215 – reference: Lee Y, Wei C, Cheng T, et al (2012) Nearest-neighbor-based approach to time-series classification. Decis Support Syst – reference: Luss R, Chen P, Dhurandhar A, et al (2019) Generating contrastive explanations with monotonic attribute functions. arXiv preprint arXiv:1905.12698 – reference: GleicherMA framework for considering comprehensibility in modelingBig Data201642758810.1089/big.2016.0007 – reference: Guidotti R, Monreale A, Spinnato F, et al (2020b) Explaining any time series classifier. In: 2nd IEEE international conference on cognitive machine intelligence, CogMI 2020, Atlanta, GA, USA – reference: Ming Y, Qu H, Bertini E (2019) Rulematrix: visualizing and understanding classifiers with rules. IEEE Trans Vis Comput Graph – reference: Adadi A, Berrada M (2018) Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access – reference: Doersch C (2016) Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 – reference: Hand DJ, Till RJ (2001) A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn – reference: Hvilshøj F, Iosifidis A, Assent I (2021) ECINN: efficient counterfactuals from invertible neural networks. In: BMVC. BMVA Press, p 43 – reference: VermeireTBrughmansDGoethalsSExplainable image classification with evidence counterfactualPattern Anal Appl202225231533510.1007/s10044-021-01055-y – reference: DomingosPMKnowledge discovery via multiple modelsIntell Data Anal199821–418720210.3233/IDA-1998-2303 – reference: Tjoa E, Guan C (2019) A survey on explainable artificial intelligence (XAI): towards medical XAI. arXiv preprint arXiv:1907.07374 – reference: Blanco-Justicia A, Domingo-Ferrer J, Martínez S, et al (2020) Machine learning explainability via microaggregation and shallow decision trees. Knowl Based Syst – reference: Plumb G, Molitor D, Talwalkar A (2018) Model agnostic supervised local explanations. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada – reference: Wu Z, Ong DC (2021) Context-guided BERT for targeted aspect-based sentiment analysis. In: Thirty-fifth AAAI conference on artificial intelligence, AAAI 2021, thirty-third conference on innovative applications of artificial intelligence, IAAI 2021, the eleventh symposium on educational advances in artificial intelligence, EAAI 2021, virtual event – reference: Chen J, Song L, Wainwright MJ, et al (2018) Learning to explain: an information-theoretic perspective on model interpretation. In: Proceedings of the 35th international conference on machine learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden – reference: Wu Z, Pan S, Chen F, et al (2021b) A comprehensive survey on graph neural networks. IEEE Trans Neural Networks Learn Syst – reference: Zafar MR, Khan NM (2019) DLIME: a deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems. arXiv preprint arXiv:1906.10263 – reference: Dhurandhar A, Chen P, Luss R, et al (2018) Explanations based on the missing: towards contrastive explanations with pertinent negatives. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada – reference: Molnar C (2022) Model-agnostic interpretable machine learning. PhD thesis, Ludwig Maximilian University of Munich, Germany – reference: Muhammad MB, Yeasin M (2020) Eigen-cam: Class activation map using principal components. In: 2020 International joint conference on neural networks, IJCNN 2020, Glasgow, UK – reference: Guidotti R (2022) Counterfactual explanations and how to find them: literature review and benchmarking. DAMI, pp 1–55 – reference: Panigutti C, Beretta A, Giannotti F, et al (2022) Understanding the impact of explanations on advice-taking: a user study for ai-based clinical decision support systems. In: CHI ’22: CHI conference on human factors in computing systems, New Orleans, LA, USA – reference: Chattopadhay A, Sarkar A, Howlader P, et al (2018) Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE winter conference on applications of computer vision (WACV), IEEE – reference: Ghorbani A, Wexler J, Zou JY, et al (2019) Towards automatic concept-based explanations. In: Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, Vancouver, BC, Canada – reference: Adebayo J, Muelly M, Liccardi I, et al (2020) Debugging tests for model explanations. In: Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, virtual – reference: Aggarwal CC, Zhai C (2012) A survey of text classification algorithms. In: Mining text data. Springer, pp 163–222 – reference: Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell – reference: CarvalhoDVPereiraEMCardosoJSMachine learning interpretability: a survey on methods and metricsElectronics20198883210.3390/electronics8080832 – reference: Danilevsky M, Qian K, Aharonov R, et al (2020) A survey of the state of explainable AI for natural language processing. In: Proceedings of the 1st conference of the Asia-Pacific chapter of the association for computational linguistics and the 10th international joint conference on natural language processing, AACL/IJCNLP 2020, Suzhou, China – reference: Yang M, Kim B (2019) BIM: towards quantitative evaluation of interpretability methods with ground truth. arXiv preprint arXiv:1907.09701 – reference: Smilkov D, Thorat N, Kim B, et al (2017) Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 – reference: Theissler A, Spinnato F, Schlegel U, et al (2022) Explainable AI for time series classification: a review, taxonomy and research directions. IEEE Access – reference: Hase P, Bansal M (2020) Evaluating explainable AI: which algorithmic explanations help users predict model behavior? In: Proceedings of the 58th annual meeting of the association for computational linguistics, ACL 2020, Online – reference: Adebayo J, Gilmer J, Muelly M, et al (2018) Sanity checks for saliency maps. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada – reference: Arrieta AB, Rodríguez ND, Ser JD, et al (2020) Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fus – reference: Shankaranarayana SM, Runje D (2019) ALIME: autoencoder based approach for local interpretability. In: Intelligent data engineering and automated learning—IDEAL 2019—20th international conference, Manchester, UK, proceedings, part I – reference: Jain S, Wallace BC (2019) Attention is not explanation. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, NAACL-HLT 2019, Minneapolis, MN, USA, vol. 1 (long and short papers) – reference: Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory – reference: Pawelczyk M, Broelemann K, Kasneci G (2020) Learning model-agnostic counterfactual explanations for tabular data. In: WWW ’20: the web conference 2020, Taipei, Taiwan – reference: Shi S, Zhang X, Fan W (2020) A modified perturbed sampling method for local interpretable model-agnostic explanation. arXiv preprint arXiv:2002.07434 – reference: Gilpin LH, Bau D, Yuan BZ, et al (2018) Explaining explanations: an overview of interpretability of machine learning. In: 5th IEEE international conference on data science and advanced analytics, DSAA 2018, Turin, Italy – reference: Li H, Tian Y, Mueller K, et al (2019) Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation. Image Vis Comput – reference: Panigutti C, Perotti A, Pedreschi D (2020) Doctor XAI: an ontology-based approach to black-box sequential data classification explanations. In: FAT* ’20: conference on fairness, accountability, and transparency, Barcelona, Spain – reference: HastieTJTibshiraniRJGeneralized additive models1990CRC Press0747.62061 – reference: ByrneRMJohnson-LairdPIf and or: real and counterfactual possibilities in their truth and probabilityJ Exp Psychol Learn Mem Cogn202046476010.1037/xlm0000756 – reference: Lang O, Gandelsman Y, Yarom M, et al (2021) Explaining in style: training a GAN to explain a classifier in stylespace. In: ICCV. IEEE, pp 673–682 – reference: Gurumoorthy KS, Dhurandhar A, Cecchi GA, et al (2019) Efficient data representation by selecting prototypes with importance weights. In: 2019 IEEE international conference on data mining, ICDM 2019, Beijing, China – reference: Lucic A, ter Hoeve MA, Tolomei G, et al (2022) Cf-gnnexplainer: counterfactual explanations for graph neural networks. In: International conference on artificial intelligence and statistics, AISTATS 2022, virtual event – reference: Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: 3rd International conference on learning representations, ICLR 2015, San Diego, CA, USA, conference track proceedings – reference: Kim B, Wattenberg M, Gilmer J, et al (2018) Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: Proceedings of the 35th international conference on machine learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden – reference: Ley D, Mishra S, Magazzeni D (2022) Global counterfactual explanations: investigations, implementations and improvements. In: ICLR 2022 workshop on PAIR∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge $$\end{document}2Struct: privacy, accountability, interpretability, robustness, reasoning on structured data. https://openreview.net/forum?id=Btbgp0dOWZ9 – reference: Huang Q, Yamada M, Tian Y, et al (2020) Graphlime: local interpretable model explanations for graph neural networks. arXiv preprint arXiv:2001.06216 – reference: Schwarzenberg R, Hübner M, Harbecke D, et al (2019) Layerwise relevance visualization in convolutional text graph classifiers. In: Proceedings of the thirteenth workshop on graph-based methods for natural language processing, TextGraphs@EMNLP 2019, Hong Kong – reference: Goyal Y, Shalit U, Kim B (2019) Explaining classifiers with causal concept effect (cace). arXiv preprint arXiv:1907.07165 – reference: Artelt A, Hammer B (2019) On the computation of counterfactual explanations—a survey. arXiv preprint arXiv:1911.07749 – reference: Doshi-Velez F, Kim B (2017) Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 – reference: MurdochWJSinghCKumbierKDefinitions, methods, and applications in interpretable machine learningProc Natl Acad Sci2019116442207122080403058410.1073/pnas.19006541161431.62266 – reference: Wang H, Wang Z, Du M, et al (2020) Score-cam: score-weighted visual explanations for convolutional neural networks. In: 2020 IEEE/CVF conference on computer vision and pattern recognition, CVPR workshops 2020, Seattle, WA, USA – reference: Jeyakumar JV, Noor J, Cheng Y, et al (2020) How can I explain this to you? An empirical study of deep neural network explanation methods. In: Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, virtual – reference: Setzu M, Guidotti R, Monreale A, et al (2019) Global explanations with local scoring. In: Machine learning and knowledge discovery in databases—international workshops of ECML PKDD 2019, Würzburg, Germany, proceedings, part I – reference: Mollas I, Bassiliades N, Tsoumakas G (2019) Lionets: local interpretation of neural networks through penultimate layer decoding. In: Machine learning and knowledge discovery in databases—international workshops of ECML PKDD 2019, Würzburg, Germany, proceedings, part I – reference: Prado-Romero MA, Prenkaj B, Stilo G, et al (2022) A survey on graph counterfactual explanations: definitions, methods, evaluation. arXiv preprint arXiv:2210.12089 – reference: Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, USA – reference: Samek W, Montavon G, Vedaldi A, et al (eds) (2019) Explainable AI: interpreting, explaining and visualizing deep learning, lecture notes in computer science, vol 11700. Springer – reference: Shen W, Wei Z, Huang S, et al (2021) Interpretable compositional convolutional neural networks. In: Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI 2021, virtual event/Montreal, Canada – reference: Yuan H, Yu H, Gui S, et al (2020c) Explainability in graph neural networks: a taxonomic survey. arXiv preprint arXiv:2012.15445 – reference: Craven MW, Shavlik JW (1995) Extracting tree-structured representations of trained networks. In: Advances in neural information processing systems 8, NIPS, Denver, CO, USA – reference: Puri I, Dhurandhar A, Pedapati T, et al (2021) Cofrnets: interpretable neural architecture inspired by continued fractions. In: Advances in neural information processing systems 34: annual conference on neural information processing systems 2021, NeurIPS 2021, virtual – reference: FriedmanJPopescuBEPredictive learning via rule ensemblesAnn Appl Stat20082916954252217510.1214/07-AOAS1481149.62051 – reference: Cai L, Ji S (2020) A multi-scale approach for graph link prediction. In: The thirty-fourth AAAI conference on artificial intelligence, AAAI 2020, the thirty-second innovative applications of artificial intelligence conference, IAAI 2020, the tenth AAAI symposium on educational advances in artificial intelligence, EAAI 2020, New York, NY, USA – reference: Zhou Y, Hooker G (2016) Interpreting models via single tree approximation. arXiv preprint arXiv:1610.09036 – reference: Looveren AV, Klaise J (2021) Interpretable counterfactual explanations guided by prototypes. In: Machine learning and knowledge discovery in databases. Research track—European conference, ECML PKDD 2021, Bilbao, Spain, proceedings, part II – reference: Ribeiro MT, Singh S, Guestrin C (2018) Anchors: High-precision model-agnostic explanations. In: Proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA – reference: Guidotti R, Monreale A, Matwin S, et al (2019b) Black box explanation by learning image exemplars in the latent feature space. In: Machine learning and knowledge discovery in databases—European conference, ECML PKDD 2019, Würzburg, Germany, proceedings, part I – reference: Chipman H, George E, McCulloh R (1998) Making sense of a forest of trees. Comput Sci Stat – reference: Fong R, Patrick M, Vedaldi A (2019) Understanding deep networks via extremal perturbations and smooth masks. In: 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South) – reference: Li O, Liu H, Chen C, et al (2018) Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. In: Proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA – reference: Nori H, Jenkins S, Koch P, et al (2019) Interpretml: a unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 – reference: Wachter S, Mittelstadt BD, Russell C (2017) Counterfactual explanations without opening the black box: automated decisions and the GDPR. arXiv preprint arXiv:1711.00399 – reference: SnyderHLiterature review as a research methodology: an overview and guidelinesJ Bus Res201910433333910.1016/j.jbusres.2019.07.039 – reference: Verma S, Dickerson JP, Hines K (2020) Counterfactual explanations for machine learning: a review. arXiv preprint arXiv:2010.10596 – reference: Srivastava S, Labutov I, Mitchell TM (2017) Joint concept learning and semantic parsing from natural language explanations. In: Proceedings of the 2017 conference on empirical methods in natural language processing, EMNLP 2017, Copenhagen, Denmark – reference: Chowdhary K (2020) Natural language processing. In: Fundamentals of artificial intelligence. Springer, pp 603–649 – reference: Lapuschkin S, Wäldchen S, Binder A, et al (2019) Unmasking clever hans predictors and assessing what machines really learn. arXiv preprint arXiv:1902.10178 – reference: Letham B, Rudin C, McCormick TH, et al (2015) Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. arXiv preprint arXiv:1511.01644 – reference: Anjomshoae S, Kampik T, Främling K (2020) Py-ciu: a python library for explaining machine learning predictions using contextual importance and utility. In: IJCAI-PRICAI 2020 workshop on explainable artificial intelligence (XAI) – reference: Selvaraju RR, Cogswell M, Das A, et al (2020) Grad-cam: Visual explanations from deep networks via gradient-based localization. Int J Comput Vis – ident: 933_CR29 – ident: 933_CR104 – ident: 933_CR171 doi: 10.1145/3394486.3403085 – ident: 933_CR58 – ident: 933_CR169 doi: 10.32614/CRAN.package.sbrl – ident: 933_CR73 – volume: 8 start-page: 832 issue: 8 year: 2019 ident: 933_CR26 publication-title: Electronics doi: 10.3390/electronics8080832 – ident: 933_CR96 – ident: 933_CR9 – ident: 933_CR38 – ident: 933_CR138 doi: 10.1007/978-3-030-28954-6 – ident: 933_CR15 – ident: 933_CR68 doi: 10.5220/0010840500003123 – ident: 933_CR94 doi: 10.1016/j.dss.2011.12.014 – ident: 933_CR135 doi: 10.1109/TKDE.2007.190734 – volume: 3 start-page: 4 issue: 1 year: 2020 ident: 933_CR21 publication-title: SMU Data Sci Rev – ident: 933_CR127 – ident: 933_CR67 – ident: 933_CR76 – ident: 933_CR30 – volume-title: Generalized additive models year: 1990 ident: 933_CR70 – ident: 933_CR24 – ident: 933_CR77 doi: 10.1109/IJCNN52387.2021.9534369 – ident: 933_CR136 – ident: 933_CR153 – ident: 933_CR106 doi: 10.1145/3447548.3467265 – ident: 933_CR25 doi: 10.1093/comjnl/bxl018 – ident: 933_CR174 – ident: 933_CR175 doi: 10.1561/9781680836592 – ident: 933_CR95 doi: 10.1214/15-AOAS848 – ident: 933_CR168 – ident: 933_CR64 doi: 10.1609/aaai.v34i09.7116 – ident: 933_CR101 – ident: 933_CR10 – ident: 933_CR108 doi: 10.25300/MISQ/2014/38.1.04 – ident: 933_CR123 doi: 10.1145/3366423.3380087 – ident: 933_CR53 doi: 10.1016/j.eswa.2020.113829 – volume: 4 start-page: 75 issue: 2 year: 2016 ident: 933_CR56 publication-title: Big Data doi: 10.1089/big.2016.0007 – ident: 933_CR143 doi: 10.1016/j.artint.2021.103457 – ident: 933_CR119 doi: 10.24963/ijcai.2021/396 – ident: 933_CR121 doi: 10.1145/3491102.3502104 – ident: 933_CR49 – ident: 933_CR147 – ident: 933_CR84 doi: 10.1613/jair.4496 – ident: 933_CR87 – ident: 933_CR151 doi: 10.18653/v1/D17-1161 – ident: 933_CR99 doi: 10.1016/j.imavis.2019.02.005 – ident: 933_CR75 – ident: 933_CR110 doi: 10.1016/j.artint.2018.07.007 – ident: 933_CR4 – ident: 933_CR90 doi: 10.1145/2939672.2939874 – ident: 933_CR98 – ident: 933_CR177 – ident: 933_CR158 – ident: 933_CR91 doi: 10.1007/978-3-030-61527-7_24 – ident: 933_CR13 – ident: 933_CR7 doi: 10.24963/ijcai.2020/63 – ident: 933_CR39 doi: 10.18653/v1/2022.acl-long.213 – ident: 933_CR42 – ident: 933_CR163 doi: 10.1145/2876034.2876042 – ident: 933_CR133 doi: 10.1145/2939672.2939778 – ident: 933_CR18 doi: 10.1214/11-AOAS495 – ident: 933_CR22 doi: 10.24963/ijcai.2019/876 – ident: 933_CR65 doi: 10.1109/CogMI50398.2020.00029 – ident: 933_CR129 – ident: 933_CR165 doi: 10.18653/v1/2021.acl-long.523 – ident: 933_CR130 – ident: 933_CR72 doi: 10.18653/v1/2020.acl-demos.22 – ident: 933_CR113 – ident: 933_CR172 – ident: 933_CR12 doi: 10.18653/v1/W17-5221 – ident: 933_CR122 doi: 10.4159/harvard.9780674736061 – ident: 933_CR47 doi: 10.23919/MIPRO.2018.8400040 – ident: 933_CR78 doi: 10.24963/ijcai.2020/395 – ident: 933_CR145 doi: 10.24963/ijcai.2021/409 – ident: 933_CR118 – volume: 25 start-page: 315 issue: 2 year: 2022 ident: 933_CR160 publication-title: Pattern Anal Appl doi: 10.1007/s10044-021-01055-y – ident: 933_CR107 doi: 10.1609/aaai.v35i15.17594 – ident: 933_CR154 doi: 10.1145/3412815.3416893 – ident: 933_CR124 – ident: 933_CR81 – ident: 933_CR83 doi: 10.1609/aaai.v35i13.17377 – ident: 933_CR162 doi: 10.1109/CVPRW50498.2020.00020 – ident: 933_CR33 doi: 10.1089/big.2016.0047 – ident: 933_CR117 doi: 10.1109/CVPR46437.2021.01469 – ident: 933_CR89 – ident: 933_CR149 – ident: 933_CR152 doi: 10.1017/S1431927616003536 – ident: 933_CR54 – volume: 116 start-page: 22071 issue: 44 year: 2019 ident: 933_CR116 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1900654116 – ident: 933_CR55 doi: 10.1109/DSAA.2018.00018 – ident: 933_CR34 doi: 10.1007/978-81-322-3972-7_19 – ident: 933_CR111 doi: 10.1109/TVCG.2018.2864812 – ident: 933_CR128 doi: 10.1145/3375627.3375850 – ident: 933_CR63 doi: 10.1145/3236009 – ident: 933_CR20 doi: 10.1145/775047.775113 – ident: 933_CR50 doi: 10.1109/ICCV.2019.00304 – ident: 933_CR134 doi: 10.1609/aaai.v32i1.11491 – ident: 933_CR100 – ident: 933_CR40 – ident: 933_CR140 doi: 10.18653/v1/D19-5308 – ident: 933_CR114 doi: 10.1145/3351095.3372850 – ident: 933_CR11 – volume: 10 issue: 7 year: 2015 ident: 933_CR16 publication-title: PLoS One doi: 10.1371/journal.pone.0130140 – ident: 933_CR112 doi: 10.1007/978-3-030-43823-4_23 – ident: 933_CR41 doi: 10.1109/WACV45572.2020.9093360 – ident: 933_CR60 doi: 10.1007/s10618-022-00831-6 – ident: 933_CR86 – ident: 933_CR126 doi: 10.18653/v1/N19-1337 – ident: 933_CR146 – volume: 104 start-page: 333 year: 2019 ident: 933_CR150 publication-title: J Bus Res doi: 10.1016/j.jbusres.2019.07.039 – ident: 933_CR61 doi: 10.1109/MIS.2019.2957223 – ident: 933_CR132 – ident: 933_CR166 doi: 10.1109/TNNLS.2020.2978386 – ident: 933_CR80 – ident: 933_CR66 doi: 10.1109/ICDM.2019.00036 – ident: 933_CR105 – volume: 46 start-page: 760 issue: 4 year: 2020 ident: 933_CR23 publication-title: J Exp Psychol Learn Mem Cogn doi: 10.1037/xlm0000756 – ident: 933_CR115 doi: 10.1109/IJCNN48605.2020.9206626 – ident: 933_CR141 doi: 10.1007/s11263-019-01228-7 – ident: 933_CR79 doi: 10.1109/ICCV.2019.00505 – ident: 933_CR5 – volume: 2 start-page: 916 year: 2008 ident: 933_CR52 publication-title: Ann Appl Stat doi: 10.1214/07-AOAS148 – ident: 933_CR102 doi: 10.1145/3351095.3372824 – ident: 933_CR97 – ident: 933_CR157 – ident: 933_CR176 doi: 10.2139/ssrn.4476687 – volume: 2 start-page: 187 issue: 1–4 year: 1998 ident: 933_CR44 publication-title: Intell Data Anal doi: 10.3233/IDA-1998-2303 – ident: 933_CR14 – ident: 933_CR131 doi: 10.18653/v1/P19-1487 – volume: 15 start-page: 1 issue: 1 year: 2013 ident: 933_CR51 publication-title: SIGKDD Explor doi: 10.1145/2594473.2594475 – ident: 933_CR28 doi: 10.18653/v1/2022.emnlp-main.484 – ident: 933_CR48 doi: 10.1007/978-3-030-28730-6_4 – ident: 933_CR164 – ident: 933_CR155 doi: 10.1016/j.knosys.2017.02.023 – ident: 933_CR62 doi: 10.1007/978-3-030-46150-8_12 – ident: 933_CR19 doi: 10.1016/j.knosys.2020.105532 – ident: 933_CR93 doi: 10.1038/s41467-019-08987-4 – ident: 933_CR142 doi: 10.1007/978-3-030-43823-4_14 – ident: 933_CR137 doi: 10.1038/s42256-019-0048-x – ident: 933_CR8 – ident: 933_CR139 – ident: 933_CR173 – ident: 933_CR59 doi: 10.1016/j.artint.2020.103428 – ident: 933_CR156 doi: 10.1109/ACCESS.2022.3207765 – ident: 933_CR170 – ident: 933_CR92 doi: 10.1109/ICCV48922.2021.00073 – ident: 933_CR120 doi: 10.1145/3351095.3372855 – ident: 933_CR17 – ident: 933_CR27 doi: 10.1109/WACV.2018.00097 – ident: 933_CR46 – ident: 933_CR69 doi: 10.18653/v1/2020.acl-main.491 – ident: 933_CR45 doi: 10.1109/CVPR52688.2022.01002 – ident: 933_CR125 – ident: 933_CR35 doi: 10.1145/3531146.3533112 – ident: 933_CR71 doi: 10.1145/3306618.3314273 – ident: 933_CR148 – ident: 933_CR167 – ident: 933_CR88 – ident: 933_CR31 doi: 10.18653/v1/D16-1053 – ident: 933_CR103 – ident: 933_CR32 – ident: 933_CR1 doi: 10.18653/v1/D17-2011 – ident: 933_CR3 – ident: 933_CR57 – ident: 933_CR161 doi: 10.2139/ssrn.3063289 – ident: 933_CR74 – ident: 933_CR159 – ident: 933_CR36 doi: 10.1109/TIT.1967.1053964 – ident: 933_CR6 doi: 10.1007/978-1-4614-3223-4_6 – ident: 933_CR109 doi: 10.2139/ssrn.878283 – ident: 933_CR2 doi: 10.1109/ACCESS.2018.2870052 – ident: 933_CR37 – ident: 933_CR43 – ident: 933_CR144 doi: 10.1007/978-3-030-33607-3_49 – ident: 933_CR82 doi: 10.1287/moor.12.2.262 – ident: 933_CR85 |
SSID | ssj0005230 |
Score | 2.6735973 |
Snippet | The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1719 |
SubjectTerms | Academic Surveys and Tutorials Art exhibits Artificial Intelligence Black boxes Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Decision making Ethics Information Storage and Retrieval Machine learning Mathematical models Physics Special Issue on Explainable and Interpretable Machine Learning and Data Mining Statistics for Engineering Trust |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS8MwGA-6Xbz4FqdTcvCmwaZJ0_QkbmwMwSHiYLeSJikeZjvXTeZ_b9KmVgV36iFtDt_X7_34AXClGREhDjTivjIBCuUpEh7XSBCacCwF0WXz-OOYjSb0YRpMXcKtcG2VtU4sFbXKpc2R3_rGrpjIiXB2N39HFjXKVlcdhMY2aBsVzHkLtHuD8dPzjyYPUs0Jc4oCjj03NuOG5xjmyNgsVIb1KPptmhp_80-JtLQ8w32w61xGeF_x-ABs6ewQ7NVwDNBJ5xHo98zz9U2U2W8oMgWL1eJDf8I8hXo9n4kq8Qcr0OgCGncVJjZ_B5N8DUtInOIYTIaDl_4IOYwEJO0MK8KcCU8bueRMYkWMsdFhmnKVhr7yE2LCI608xu0OG1tQi0Jfa6Y8hUWQSmVs-QloZXmmTwFUVDJfhhGXUlHFdRJEVFIiA3OgqC87ANfkiaVbIG5xLGZxs_rYkjQ2JI1LksZRB1x_fzOv1mdsfLtbUz12olTEDeM74KbmRHP8_21nm287Bzt-yXzbL9YFreVipS-Mg7FMLt1f9AXiy8p2 priority: 102 providerName: ProQuest |
Title | Benchmarking and survey of explanation methods for black box models |
URI | https://link.springer.com/article/10.1007/s10618-023-00933-9 https://www.proquest.com/docview/2853132386 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4ieDFj6k4P0YO3jTQpGmaHrexTRRFxIGeSpqkeJjbsE7mf2-Sdk5FBS8tNGkgL3m87_cDODE8lDGJDBZUWwOFiRzLQBgsQ5YJomRofPL41TU_H7KL--i-apPjamG-xe9diRsnAlvJgr3xjZMarEYkjB1MQ5d3P6VzhGVFsGA4EiSoCmR-XuOrEFpqlt-CoV7G9Ldgo1IOUbs8zW1YMeMGbC6AF1DFhw1Y83mbqtiBbsd-eXyS3uON5FijYvb8at7QJEdmPh3J0tmHSqDoAlkVFWXOZ4eyyRx5GJxiF4b93l33HFe4CFi5ulVMBJeBsbwouCI6tALGxHkudB5TTbPQmkRGB1y4vjUuiJbE1BiuA01klCtt5fce1MeTsdkHpJniVMWJUEozLUwWJUyxUEV2QDOqmkAWhEpV1TTcYVeM0mW7Y0fc1BI39cRNkyacfvwzLVtm_Dn7aEH_tGKfIqVWibBmst1gE84WZ7Ic_n21g_9NP4R16q-Fyxk7gvrL88wcWyXjJWtBTfQHLVhtDx4ue_bd6V3f3Lb8nbPPIW2_AwBOydM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07U9wwEN6BSxGaPHgMxysqoEo02JIsywXDEMjleFYwQ2dkSR4KcndgIMef4jeykm0uMBM6KheyVaw-70u7-wGsO8l1GieOKmYxQBGqpDpSjmouChUbzV0oHj8-kf0zcXCenE_BY9sL48sqW50YFLUdGp8j32RoVzBy4kpuj66pZ43yt6sthUYNi0P38BdDtmprfw_Pd4Ox3q_T3T5tWAWo8V2fNFZSRw6RrKSJLUf17NKyVLZMmWUFx4DC2UgqP_XFX0FlKXNO2sjGOimNReuH-07DB8HRkvvO9N7vf0pKeN2VrARNVBw1TTpNq56MFUULSUMSgWYvDeHEu311IRvsXO8LfGocVLJTI-orTLnBLHxuyR9IowvmYPcnPi__6JBrJ3pgSXV3c-8eyLAkbjy60nWakdQU1RVB55gUPltIiuGYBAKeah7O3kV2C9AZDAduEYgVRjKTZsoYK6xyRZIJI7hJcMEKZroQt-LJTTOu3LNmXOWTQctepDmKNA8izbMufH_-ZlQP63jz7ZVW6nnz41b5BGZd-NGexGT5_7stvb3bN_jYPz0-yo_2Tw6XYYYFIPhKtRXo3N7cuVV0bW6LtYAnAhfvDeAndmcEZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6aaEPdSkPH8qJWiSO4zgHVPFasV1YraoicUsd21EPNLsQaOGv8es6ThwCSN0bpxyc-DD-Mi_PzAfw2YpIJWFsqWQGAxQuC6oCaamKeC5DrSJbF4-fjMXRKf92Fp8twF3bC-PKKludWCtqM9UuR77N0K5g5BRJsV34sojJweDr7II6Bil309rSaTQQGdnbvxi-VTvDAzzrTcYGhz_2j6hnGKDadYDSUAoVWES1FDo0EapqmxSFNEXCDMsjDC6sCYR0E2DcdVSaMGuFCUyo4kIbtIS47wtYTFxU1IPFvcPx5PuDApOo6VGWnMYyDHzLjm_cE6GkaC9pnVKg6WOz2Pm6T65na6s3WILX3l0luw2-lmHBlm_hTUsFQbxmeAf7e_j89VvVmXeiSkOq68s_9pZMC2JvZueqSTqShrC6Iugqk9zlDkk-vSE1HU_1Hk6fRXofoFdOS_sRiOFaMJ2kUmvDjbR5nHLNIx3jguFM9yFsxZNpP7zccWicZ93YZSfSDEWa1SLN0j5s3X8za0Z3zH17tZV65n_jKutA14cv7Ul0y__fbWX-bhvwEsGbHQ_Ho0_witU4cGVrq9C7ury2a-jnXOXrHlAEfj43hv8BNBcJ9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+and+survey+of+explanation+methods+for+black+box+models&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Bodria%2C+Francesco&rft.au=Giannotti%2C+Fosca&rft.au=Guidotti%2C+Riccardo&rft.au=Naretto%2C+Francesca&rft.date=2023-09-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=37&rft.issue=5&rft.spage=1719&rft.epage=1778&rft_id=info:doi/10.1007%2Fs10618-023-00933-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_023_00933_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |