Benchmarking and survey of explanation methods for black box models

The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how these models work in an understandable way to users and decision makers. Unsurprisingly, the state-of-the-art exhibits currently a plethora of...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 37; no. 5; pp. 1719 - 1778
Main Authors Bodria, Francesco, Giannotti, Fosca, Guidotti, Riccardo, Naretto, Francesca, Pedreschi, Dino, Rinzivillo, Salvatore
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how these models work in an understandable way to users and decision makers. Unsurprisingly, the state-of-the-art exhibits currently a plethora of explainers providing many different types of explanations. With the aim of providing a compass for researchers and practitioners, this paper proposes a categorization of explanation methods from the perspective of the type of explanation they return, also considering the different input data formats. The paper accounts for the most representative explainers to date, also discussing similarities and discrepancies of returned explanations through their visual appearance. A companion website to the paper is provided as a continuous update to new explainers as they appear. Moreover, a subset of the most robust and widely adopted explainers, are benchmarked with respect to a repertoire of quantitative metrics.
AbstractList The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how these models work in an understandable way to users and decision makers. Unsurprisingly, the state-of-the-art exhibits currently a plethora of explainers providing many different types of explanations. With the aim of providing a compass for researchers and practitioners, this paper proposes a categorization of explanation methods from the perspective of the type of explanation they return, also considering the different input data formats. The paper accounts for the most representative explainers to date, also discussing similarities and discrepancies of returned explanations through their visual appearance. A companion website to the paper is provided as a continuous update to new explainers as they appear. Moreover, a subset of the most robust and widely adopted explainers, are benchmarked with respect to a repertoire of quantitative metrics.
Author Naretto, Francesca
Pedreschi, Dino
Guidotti, Riccardo
Bodria, Francesco
Giannotti, Fosca
Rinzivillo, Salvatore
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0001-9583-3897
  surname: Bodria
  fullname: Bodria, Francesco
  email: francesco.bodria@sns.it
  organization: Scuola Normale Superiore
– sequence: 2
  givenname: Fosca
  surname: Giannotti
  fullname: Giannotti, Fosca
  organization: Scuola Normale Superiore
– sequence: 3
  givenname: Riccardo
  surname: Guidotti
  fullname: Guidotti, Riccardo
  organization: University of Pisa
– sequence: 4
  givenname: Francesca
  surname: Naretto
  fullname: Naretto, Francesca
  email: francesca.naretto@sns.it
  organization: Scuola Normale Superiore
– sequence: 5
  givenname: Dino
  surname: Pedreschi
  fullname: Pedreschi, Dino
  organization: University of Pisa
– sequence: 6
  givenname: Salvatore
  surname: Rinzivillo
  fullname: Rinzivillo, Salvatore
  organization: ISTI-CNR
BookMark eNp9kE9LAzEQxYNUsK1-AU8Bz9FJsptkj1r8B4IXBW8h3WTbbbdJTbbSfntjKwgeepo5zO-9eW-EBj54h9AlhWsKIG8SBUEVAcYJQMU5qU7QkJaSE1mKj0HeuSpIqSicoVFKCwAoGYchmtw5X89XJi5bP8PGW5w28cvtcGiw2647403fBo9Xrp8Hm3ATIp52pl7iadjiVbCuS-fotDFdche_c4zeH-7fJk_k5fXxeXL7QmomVUWoEgYcVVyJmlrOVOFk0yjbSGbZlAtaOQtCSV4oDkVVSeacsGCpKZvaCsrH6Oqgu47hc-NSrxdhE3221EyVnHKWpfMVO1zVMaQUXaPXsc0Bd5qC_ilLH8rSuSy9L0tXGVL_oLrt98n7aNruOMoPaMo-fubi31dHqG84H38_
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3409843
crossref_primary_10_3390_electronics14030571
crossref_primary_10_3390_computers14010030
crossref_primary_10_1145_3701740
crossref_primary_10_1145_3702651
crossref_primary_10_3389_fpace_2024_1475139
crossref_primary_10_1109_TPAMI_2023_3241106
crossref_primary_10_1016_j_arr_2024_102617
crossref_primary_10_1002_aesr_202300157
crossref_primary_10_3390_electronics14050987
crossref_primary_10_1002_2056_4538_70023
crossref_primary_10_1021_acs_jctc_4c01347
crossref_primary_10_1080_10447318_2024_2364986
crossref_primary_10_1109_ACCESS_2024_3496114
crossref_primary_10_1016_j_jad_2025_01_136
crossref_primary_10_1007_s42484_025_00253_9
crossref_primary_10_1016_j_engappai_2025_110142
crossref_primary_10_1016_j_neucom_2025_129379
crossref_primary_10_3390_make6020038
crossref_primary_10_1109_TCAD_2022_3197508
crossref_primary_10_1016_j_inffus_2024_102923
crossref_primary_10_3389_fonc_2024_1419621
crossref_primary_10_1007_s10618_024_01041_y
crossref_primary_10_1007_s13198_024_02650_y
crossref_primary_10_1007_s41060_024_00636_4
crossref_primary_10_1093_bib_bbae593
crossref_primary_10_1016_j_ijar_2024_109206
crossref_primary_10_1016_j_inffus_2024_102782
crossref_primary_10_1038_s41598_024_82501_9
crossref_primary_10_3390_app14051811
crossref_primary_10_1007_s11432_024_4123_4
crossref_primary_10_1007_s12559_024_10272_6
crossref_primary_10_1016_j_techfore_2024_123499
crossref_primary_10_3390_asi7060121
crossref_primary_10_1016_j_enbuild_2024_114434
crossref_primary_10_1145_3624480
crossref_primary_10_1109_ACCESS_2024_3498907
crossref_primary_10_1007_s10462_024_10916_x
crossref_primary_10_1016_j_irfa_2024_103147
crossref_primary_10_1109_ACCESS_2025_3537459
crossref_primary_10_1109_JSTARS_2024_3462537
crossref_primary_10_1007_s12559_024_10332_x
Cites_doi 10.1145/3394486.3403085
10.32614/CRAN.package.sbrl
10.3390/electronics8080832
10.1007/978-3-030-28954-6
10.5220/0010840500003123
10.1016/j.dss.2011.12.014
10.1109/TKDE.2007.190734
10.1109/IJCNN52387.2021.9534369
10.1145/3447548.3467265
10.1093/comjnl/bxl018
10.1561/9781680836592
10.1214/15-AOAS848
10.1609/aaai.v34i09.7116
10.25300/MISQ/2014/38.1.04
10.1145/3366423.3380087
10.1016/j.eswa.2020.113829
10.1089/big.2016.0007
10.1016/j.artint.2021.103457
10.24963/ijcai.2021/396
10.1145/3491102.3502104
10.1613/jair.4496
10.18653/v1/D17-1161
10.1016/j.imavis.2019.02.005
10.1016/j.artint.2018.07.007
10.1145/2939672.2939874
10.1007/978-3-030-61527-7_24
10.24963/ijcai.2020/63
10.18653/v1/2022.acl-long.213
10.1145/2876034.2876042
10.1145/2939672.2939778
10.1214/11-AOAS495
10.24963/ijcai.2019/876
10.1109/CogMI50398.2020.00029
10.18653/v1/2021.acl-long.523
10.18653/v1/2020.acl-demos.22
10.18653/v1/W17-5221
10.4159/harvard.9780674736061
10.23919/MIPRO.2018.8400040
10.24963/ijcai.2020/395
10.24963/ijcai.2021/409
10.1007/s10044-021-01055-y
10.1609/aaai.v35i15.17594
10.1145/3412815.3416893
10.1609/aaai.v35i13.17377
10.1109/CVPRW50498.2020.00020
10.1089/big.2016.0047
10.1109/CVPR46437.2021.01469
10.1017/S1431927616003536
10.1073/pnas.1900654116
10.1109/DSAA.2018.00018
10.1007/978-81-322-3972-7_19
10.1109/TVCG.2018.2864812
10.1145/3375627.3375850
10.1145/3236009
10.1145/775047.775113
10.1109/ICCV.2019.00304
10.1609/aaai.v32i1.11491
10.18653/v1/D19-5308
10.1145/3351095.3372850
10.1371/journal.pone.0130140
10.1007/978-3-030-43823-4_23
10.1109/WACV45572.2020.9093360
10.1007/s10618-022-00831-6
10.18653/v1/N19-1337
10.1016/j.jbusres.2019.07.039
10.1109/MIS.2019.2957223
10.1109/TNNLS.2020.2978386
10.1109/ICDM.2019.00036
10.1037/xlm0000756
10.1109/IJCNN48605.2020.9206626
10.1007/s11263-019-01228-7
10.1109/ICCV.2019.00505
10.1214/07-AOAS148
10.1145/3351095.3372824
10.2139/ssrn.4476687
10.3233/IDA-1998-2303
10.18653/v1/P19-1487
10.1145/2594473.2594475
10.18653/v1/2022.emnlp-main.484
10.1007/978-3-030-28730-6_4
10.1016/j.knosys.2017.02.023
10.1007/978-3-030-46150-8_12
10.1016/j.knosys.2020.105532
10.1038/s41467-019-08987-4
10.1007/978-3-030-43823-4_14
10.1038/s42256-019-0048-x
10.1016/j.artint.2020.103428
10.1109/ACCESS.2022.3207765
10.1109/ICCV48922.2021.00073
10.1145/3351095.3372855
10.1109/WACV.2018.00097
10.18653/v1/2020.acl-main.491
10.1109/CVPR52688.2022.01002
10.1145/3531146.3533112
10.1145/3306618.3314273
10.18653/v1/D16-1053
10.18653/v1/D17-2011
10.2139/ssrn.3063289
10.1109/TIT.1967.1053964
10.1007/978-1-4614-3223-4_6
10.2139/ssrn.878283
10.1109/ACCESS.2018.2870052
10.1007/978-3-030-33607-3_49
10.1287/moor.12.2.262
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-023-00933-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1778
ExternalDocumentID 10_1007_s10618_023_00933_9
GrantInformation_xml – fundername: H2020 European Research Council
  grantid: 834756
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: H2020 Excellent Science
  grantid: 871042
  funderid: http://dx.doi.org/10.13039/100010662
– fundername: H2020 LEIT Information and Communication Technologies
  grantid: 952026; 952215
  funderid: http://dx.doi.org/10.13039/100010669
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c2789-186a0e18386c1d3284e7ff8df72d2b3619ed06873483049972ee6d0d1a5fcd613
IEDL.DBID C6C
ISSN 1384-5810
IngestDate Sat Aug 23 13:52:16 EDT 2025
Tue Jul 01 00:40:33 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Fri Feb 21 02:43:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Explainable artificial intelligence
Interpretable machine learning
Benchmarking
Transparent models
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2789-186a0e18386c1d3284e7ff8df72d2b3619ed06873483049972ee6d0d1a5fcd613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9583-3897
OpenAccessLink https://doi.org/10.1007/s10618-023-00933-9
PQID 2853132386
PQPubID 43030
PageCount 60
ParticipantIDs proquest_journals_2853132386
crossref_primary_10_1007_s10618_023_00933_9
crossref_citationtrail_10_1007_s10618_023_00933_9
springer_journals_10_1007_s10618_023_00933_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Artelt A, Hammer B (2019) On the computation of counterfactual explanations—a survey. arXiv preprint arXiv:1911.07749
Jain S, Wallace BC (2019) Attention is not explanation. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, NAACL-HLT 2019, Minneapolis, MN, USA, vol. 1 (long and short papers)
Katehakis Jr MN, Veinott AF (1987) The multi-armed bandit problem: decomposition and computation. Math Oper Res
Yeh C, Kim B, Arik SÖ, et al (2020) On completeness-aware concept-based explanations in deep neural networks. In: Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, virtual
Pawelczyk M, Broelemann K, Kasneci G (2020) Learning model-agnostic counterfactual explanations for tabular data. In: WWW ’20: the web conference 2020, Taipei, Taiwan
Guidotti R, Monreale A, Giannotti F, et al (2019a) Factual and counterfactual explanations for black box decision making. IEEE Intell Syst
Guidotti R (2021) Evaluating local explanation methods on ground truth. Artif Intell
Guidotti R, Monreale A, Matwin S, et al (2020a) Explaining image classifiers generating exemplars and counter-exemplars from latent representations. In: The thirty-fourth AAAI conference on artificial intelligence, AAAI 2020, the thirty-second innovative applications of artificial intelligence conference, IAAI 2020, the tenth AAAI symposium on educational advances in artificial intelligence, EAAI 2020, New York, NY, USA
Hvilshøj F, Iosifidis A, Assent I (2021) ECINN: efficient counterfactuals from invertible neural networks. In: BMVC. BMVA Press, p 43
Panigutti C, Perotti A, Pedreschi D (2020) Doctor XAI: an ontology-based approach to black-box sequential data classification explanations. In: FAT* ’20: conference on fairness, accountability, and transparency, Barcelona, Spain
Rajani NF, McCann B, Xiong C, et al (2019) Explain yourself! Leveraging language models for commonsense reasoning. In: Proceedings of the 57th conference of the association for computational linguistics, ACL 2019, Florence, Italy, vol 1: long papers
Došilović FK, Brčić M, Hlupić N (2018) Explainable artificial intelligence: a survey. In: 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO), IEEE, pp 0210–0215
Fong R, Patrick M, Vedaldi A (2019) Understanding deep networks via extremal perturbations and smooth masks. In: 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South)
Pasquale F (2015) The black box society: the secret algorithms that control money and information. Harvard University Press
MurdochWJSinghCKumbierKDefinitions, methods, and applications in interpretable machine learningProc Natl Acad Sci2019116442207122080403058410.1073/pnas.19006541161431.62266
Goyal Y, Shalit U, Kim B (2019) Explaining classifiers with causal concept effect (cace). arXiv preprint arXiv:1907.07165
Chemmengath SA, Azad AP, Luss R, et al (2022) Let the CAT out of the bag: Contrastive attributed explanations for text. In: Proceedings of the 2022 conference on empirical methods in natural language processing, EMNLP 2022, Abu Dhabi, United Arab Emirates
Chen J, Song L, Wainwright MJ, et al (2018) Learning to explain: an information-theoretic perspective on model interpretation. In: Proceedings of the 35th international conference on machine learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden
Goebel R, Chander A, Holzinger K, et al (2018) Explainable AI: the new 42? In: Machine learning and knowledge extraction—second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 international cross-domain conference, CD-MAKE 2018, Hamburg, Germany, Proceedings
Dash S, Günlük O, Wei D (2018) Boolean decision rules via column generation. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada
Apley DW, Zhu J (2016) Visualizing the effects of predictor variables in black box supervised learning models. arXiv preprint arXiv:1612.08468
BachSBinderAMontavonGOn pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagationPLoS One201510710.1371/journal.pone.0130140
HastieTJTibshiraniRJGeneralized additive models1990CRC Press0747.62061
Ley D, Mishra S, Magazzeni D (2022) Global counterfactual explanations: investigations, implementations and improvements. In: ICLR 2022 workshop on PAIR∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge $$\end{document}2Struct: privacy, accountability, interpretability, robustness, reasoning on structured data. https://openreview.net/forum?id=Btbgp0dOWZ9
Kanamori K, Takagi T, Kobayashi K, et al (2020) DACE: distribution-aware counterfactual explanation by mixed-integer linear optimization. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI 2020
Miller T (2019) Explanation in artificial intelligence: insights from the social sciences. Artif Intell
FreitasAAComprehensible classification models: a position paperSIGKDD Explor201315111010.1145/2594473.2594475
Smilkov D, Thorat N, Kim B, et al (2017) Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825
Hoover B, Strobelt H, Gehrmann S (2019) exbert: a visual analysis tool to explore learned representations in transformers models. arXiv preprint arXiv:1910.05276
Martens D, Provost FJ (2014) Explaining data-driven document classifications. MIS Q
Kenny EM, Keane MT (2021) On generating plausible counterfactual and semi-factual explanations for deep learning. In: AAAI. AAAI Press, pp 11575–11585
Aggarwal CC, Zhai C (2012) A survey of text classification algorithms. In: Mining text data. Springer, pp 163–222
Huang Q, Yamada M, Tian Y, et al (2020) Graphlime: local interpretable model explanations for graph neural networks. arXiv preprint arXiv:2001.06216
Yang M, Kim B (2019) BIM: towards quantitative evaluation of interpretability methods with ground truth. arXiv preprint arXiv:1907.09701
Schwab P, Karlen W (2019) Cxplain: causal explanations for model interpretation under uncertainty. In: Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, Vancouver, BC, Canada
Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW
Boz O (2002) Extracting decision trees from trained neural networks. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, Edmonton, Alberta, Canada
Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia
Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory
Lipovetsky S (2022) Explanatory model analysis: Explore, explain and examine predictive models, by Przemyslaw Biecek, Tomasz Burzykowski, Boca Raton, FL, Chapman and Hall/CRC, Taylor & Francis Group, 2021, xiii + 311 pp., \$ 79.96 (hbk), ISBN 978-0-367-13559-1. Technometrics
Hind M, Wei D, Campbell M, et al (2019) TED: teaching AI to explain its decisions. In: Proceedings of the 2019 AAAI/ACM conference on AI, ethics, and society, AIES 2019, Honolulu, HI, USA
Selvaraju RR, Cogswell M, Das A, et al (2020) Grad-cam: Visual explanations from deep networks via gradient-based localization. Int J Comput Vis
Craven MW, Shavlik JW (1995) Extracting tree-structured representations of trained networks. In: Advances in neural information processing systems 8, NIPS, Denver, CO, USA
Li O, Liu H, Chen C, et al (2018) Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. In: Proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA
Lee Y, Wei C, Cheng T, et al (2012) Nearest-neighbor-based approach to time-series classification. Decis Support Syst
Suissa-Peleg A, Haehn D, Knowles-Barley S, et al (2016) Automatic neural reconstruction from petavoxel of electron microscopy data. Microsc Microanal
Kim B, Koyejo O, Khanna R (2016) Examples are not enough, learn to criticize! criticism for interpretability. In: Advances in neural information processing systems 29: annual conference on neural information processing systems 2016, Barcelona, Spain
Chipman H, George E, McCulloh R (1998) Making sense of a forest of trees. Comput Sci Stat
Lakkaraju H, Bach SH, Leskovec J (2016) Interpretable decision sets: a joint framework for description and prediction. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, USA
Ming Y, Qu H, Bertini E (2019) Rulematrix: visualizing and understanding classifiers with rules. IEEE Trans Vis Comput Graph
Shi S, Zhang X, Fan W (2020) A modified perturbed sampling method for local interpretable model-agnostic explanation. arXiv preprint arXiv:2002.07434
Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: 5th International conference on learning representations, ICLR 2017, Toulon, France, conference track proceedings
Zafar MR, Khan NM (2019) DLIME: a deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems. arXiv preprint arXiv:1906.10263
Arras L, Montavon G, Müller K, et al (2017) Explaining recurrent neura
933_CR115
933_CR118
933_CR117
933_CR119
933_CR53
933_CR50
933_CR121
933_CR120
933_CR123
933_CR57
933_CR122
933_CR54
933_CR125
933_CR55
933_CR124
933_CR58
933_CR59
WJ Murdoch (933_CR116) 2019; 116
933_CR105
933_CR104
933_CR107
933_CR106
933_CR109
933_CR108
933_CR41
933_CR42
933_CR110
933_CR40
933_CR45
933_CR112
933_CR46
933_CR111
933_CR43
933_CR114
933_CR113
933_CR49
S Bramhall (933_CR21) 2020; 3
933_CR47
933_CR48
S Bach (933_CR16) 2015; 10
933_CR30
933_CR31
933_CR34
933_CR101
933_CR35
933_CR100
933_CR32
933_CR103
933_CR33
933_CR102
933_CR38
933_CR39
933_CR36
TJ Hastie (933_CR70) 1990
933_CR37
RM Byrne (933_CR23) 2020; 46
933_CR174
933_CR20
933_CR173
933_CR176
933_CR175
933_CR24
933_CR177
DV Carvalho (933_CR26) 2019; 8
933_CR22
933_CR27
933_CR28
933_CR25
933_CR170
933_CR29
933_CR172
933_CR171
933_CR9
933_CR6
933_CR5
933_CR8
933_CR7
933_CR159
933_CR92
H Snyder (933_CR150) 2019; 104
933_CR93
933_CR90
933_CR91
933_CR96
933_CR163
933_CR97
933_CR162
933_CR94
933_CR165
933_CR95
933_CR164
933_CR12
933_CR167
933_CR13
933_CR166
933_CR10
933_CR98
933_CR169
933_CR11
AA Freitas (933_CR51) 2013; 15
M Gleicher (933_CR56) 2016; 4
933_CR99
933_CR168
933_CR17
933_CR14
933_CR15
933_CR18
933_CR161
933_CR19
T Vermeire (933_CR160) 2022; 25
933_CR149
933_CR148
933_CR81
933_CR82
933_CR80
933_CR85
933_CR152
933_CR86
933_CR151
933_CR83
933_CR154
933_CR84
933_CR153
933_CR89
933_CR156
933_CR155
933_CR87
933_CR158
933_CR88
933_CR157
J Friedman (933_CR52) 2008; 2
933_CR138
933_CR137
933_CR139
933_CR71
933_CR74
933_CR141
933_CR75
933_CR140
933_CR72
933_CR143
933_CR73
933_CR142
933_CR78
933_CR145
933_CR79
933_CR144
933_CR76
933_CR147
933_CR77
933_CR146
PM Domingos (933_CR44) 1998; 2
933_CR127
933_CR126
933_CR129
933_CR128
933_CR60
933_CR63
933_CR130
933_CR64
933_CR61
933_CR132
933_CR62
933_CR131
933_CR67
933_CR134
933_CR68
933_CR133
933_CR65
933_CR136
933_CR66
933_CR135
933_CR2
933_CR1
933_CR4
933_CR69
933_CR3
References_xml – reference: Arras L, Montavon G, Müller K, et al (2017) Explaining recurrent neural network predictions in sentiment analysis. In: Proceedings of the 8th workshop on computational approaches to subjectivity, sentiment and social media analysis, WASSA@EMNLP 2017, Copenhagen, Denmark
– reference: Kurenkov A (2020) Lessons from the pulse model and discussion. The gradient
– reference: Luss R, Chen P, Dhurandhar A, et al (2021) Leveraging latent features for local explanations. In: KDD ’21: the 27th ACM SIGKDD conference on knowledge discovery and data mining, virtual event, Singapore
– reference: Rajani NF, McCann B, Xiong C, et al (2019) Explain yourself! Leveraging language models for commonsense reasoning. In: Proceedings of the 57th conference of the association for computational linguistics, ACL 2019, Florence, Italy, vol 1: long papers
– reference: Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW
– reference: Li J, Monroe W, Jurafsky D (2016) Understanding neural networks through representation erasure. arXiv preprint arXiv:1612.08220
– reference: Chemmengath SA, Azad AP, Luss R, et al (2022) Let the CAT out of the bag: Contrastive attributed explanations for text. In: Proceedings of the 2022 conference on empirical methods in natural language processing, EMNLP 2022, Abu Dhabi, United Arab Emirates
– reference: Erion GG, Janizek JD, Sturmfels P, et al (2019) Learning explainable models using attribution priors. arXiv preprint arXiv:1906.10670
– reference: Boz O (2002) Extracting decision trees from trained neural networks. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, Edmonton, Alberta, Canada
– reference: Kim B, Koyejo O, Khanna R (2016) Examples are not enough, learn to criticize! criticism for interpretability. In: Advances in neural information processing systems 29: annual conference on neural information processing systems 2016, Barcelona, Spain
– reference: Nauta M, van Bree R, Seifert C (2021) Neural prototype trees for interpretable fine-grained image recognition. In: CVPR. Computer vision foundation/IEEE, pp 14933–14943
– reference: Renard X, Woloszko N, Aigrain J, et al (2019) Concept tree: high-level representation of variables for more interpretable surrogate decision trees. arXiv preprint arXiv:1906.01297
– reference: Robnik-Šikonja M, Kononenko I (2008) Explaining classifications for individual instances. IEEE Trans Knowl Data Eng 20(5)
– reference: Byrne RM (2019) Counterfactuals in explainable artificial intelligence (XAI): evidence from human reasoning. In: IJCAI, pp 6276–6282
– reference: Lakkaraju H, Bach SH, Leskovec J (2016) Interpretable decision sets: a joint framework for description and prediction. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, USA
– reference: Hartmann Y, Liu H, Lahrberg S, et al (2022) Interpretable high-level features for human activity recognition. In: Proceedings of the 15th international joint conference on biomedical engineering systems and technologies, BIOSTEC 2022, vol. 4: BIOSIGNALS, Online Streaming
– reference: Pan D, Li X, Zhu D (2021) Explaining deep neural network models with adversarial gradient integration. In: Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI 2021, virtual event/Montreal, Canada
– reference: Rojat T, Puget R, Filliat D, et al (2021) Explainable artificial intelligence (XAI) on timeseries data: a survey. arXiv preprint arXiv:2104.00950
– reference: Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 3rd International conference on learning representations, ICLR 2015, San Diego, CA, USA, Conference track proceedings
– reference: Calamoneri T (2006) The L(h, k)-labelling problem: a survey and annotated bibliography. Comput J
– reference: Goebel R, Chander A, Holzinger K, et al (2018) Explainable AI: the new 42? In: Machine learning and knowledge extraction—second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 international cross-domain conference, CD-MAKE 2018, Hamburg, Germany, Proceedings
– reference: Albini E, Rago A, Baroni P, et al (2020) Relation-based counterfactual explanations for bayesian network classifiers. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI 2020
– reference: Hind M, Wei D, Campbell M, et al (2019) TED: teaching AI to explain its decisions. In: Proceedings of the 2019 AAAI/ACM conference on AI, ethics, and society, AIES 2019, Honolulu, HI, USA
– reference: Dash S, Günlük O, Wei D (2018) Boolean decision rules via column generation. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada
– reference: Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: 5th International conference on learning representations, ICLR 2017, Toulon, France, conference track proceedings
– reference: Theissler A (2017) Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection. Knowl Based Syst
– reference: Xu K, Ba J, Kiros R, et al (2015) Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd international conference on machine learning, ICML 2015, Lille, France
– reference: Wu T, Ribeiro MT, Heer J, et al (2021a) Polyjuice: generating counterfactuals for explaining, evaluating, and improving models. In: Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing, ACL/IJCNLP 2021, (vol 1: long papers), virtual event
– reference: BramhallSHornHTieuMQlime-a quadratic local interpretable model-agnostic explanation approachSMU Data Sci Rev2020314
– reference: Tan S, Soloviev M, Hooker G, et al (2020) Tree space prototypes: another look at making tree ensembles interpretable. In: FODS ’20: ACM-IMS foundations of data science conference, virtual event, USA
– reference: Agarwal R, Melnick L, Frosst N, et al (2021) Neural additive models: Interpretable machine learning with neural nets. In: Advances in neural information processing systems 34: annual conference on neural information processing systems 2021, NeurIPS 2021, virtual
– reference: Lipovetsky S (2022) Explanatory model analysis: Explore, explain and examine predictive models, by Przemyslaw Biecek, Tomasz Burzykowski, Boca Raton, FL, Chapman and Hall/CRC, Taylor & Francis Group, 2021, xiii + 311 pp., \$ 79.96 (hbk), ISBN 978-0-367-13559-1. Technometrics
– reference: Desai S, Ramaswamy HG (2020) Ablation-cam: visual explanations for deep convolutional network via gradient-free localization. In: IEEE winter conference on applications of computer vision, WACV 2020, Snowmass Village, CO, USA
– reference: Lucic A, Haned H, de Rijke M (2020) Why does my model fail?: Contrastive local explanations for retail forecasting. In: FAT* ’20: conference on fairness, accountability, and transparency, Barcelona, Spain
– reference: Madaan N, Padhi I, Panwar N, et al (2021) Generate your counterfactuals: towards controlled counterfactual generation for text. In: Thirty-fifth AAAI conference on artificial intelligence, AAAI 2021, thirty-third conference on innovative applications of artificial intelligence, IAAI 2021, the eleventh symposium on educational advances in artificial intelligence, EAAI 2021, virtual event
– reference: Martens D, Baesens B, Gestel TV, et al (2007) Comprehensible credit scoring models using rule extraction from support vector machines. Eur J Oper Res
– reference: Martens D, Provost FJ (2014) Explaining data-driven document classifications. MIS Q
– reference: ElShawi R, Sherif Y, Al-Mallah M, et al (2019) Ilime: local and global interpretable model-agnostic explainer of black-box decision. In: European conference on advances in databases and information systems. Springer, pp 53–68
– reference: Arya V, Bellamy RKE, Chen P, et al (2019) One explanation does not fit all: A toolkit and taxonomy of AI explainability techniques. arXiv preprint arXiv:1909.03012
– reference: Guidotti R, Monreale A, Ruggieri S, et al (2019c) A survey of methods for explaining black box models. ACM Comput Surv
– reference: Setzu M, Guidotti R, Monreale A, et al (2021) Glocalx—from local to global explanations of black box AI models. Artif Intell
– reference: Guidotti R, Monreale A, Matwin S, et al (2020a) Explaining image classifiers generating exemplars and counter-exemplars from latent representations. In: The thirty-fourth AAAI conference on artificial intelligence, AAAI 2020, the thirty-second innovative applications of artificial intelligence conference, IAAI 2020, the tenth AAAI symposium on educational advances in artificial intelligence, EAAI 2020, New York, NY, USA
– reference: Kenny EM, Keane MT (2021) On generating plausible counterfactual and semi-factual explanations for deep learning. In: AAAI. AAAI Press, pp 11575–11585
– reference: Miller T (2019) Explanation in artificial intelligence: insights from the social sciences. Artif Intell
– reference: Donnelly J, Barnett AJ, Chen C (2022) Deformable protopnet: an interpretable image classifier using deformable prototypes. In: CVPR. IEEE, pp 10255–10265
– reference: Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. In: Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, Long Beach, CA, USA
– reference: Yuan H, Tang J, Hu X, et al (2020a) XGNN: towards model-level explanations of graph neural networks. In: KDD ’20: the 26th ACM SIGKDD conference on knowledge discovery and data mining, virtual event, CA, USA, August (2020)
– reference: Bien J, Tibshirani R (2011) Prototype selection for interpretable classification. Ann Appl Stat 2403–2424
– reference: Peltola T (2018) Local interpretable model-agnostic explanations of Bayesian predictive models via Kullback–Leibler projections. arXiv preprint arXiv:1810.02678
– reference: Apley DW, Zhu J (2016) Visualizing the effects of predictor variables in black box supervised learning models. arXiv preprint arXiv:1612.08468
– reference: Alvarez-Melis D, Jaakkola TS (2018) Towards robust interpretability with self-explaining neural networks. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada
– reference: Yang H, Rudin C, Seltzer MI (2017) Scalable Bayesian rule lists. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia
– reference: Lundberg SM, Lee S (2017) A unified approach to interpreting model predictions. In: Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, Long Beach, CA, USA
– reference: Chouldechova A (2017) Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data
– reference: BachSBinderAMontavonGOn pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagationPLoS One201510710.1371/journal.pone.0130140
– reference: Hoover B, Strobelt H, Gehrmann S (2019) exbert: a visual analysis tool to explore learned representations in transformers models. arXiv preprint arXiv:1910.05276
– reference: Poyiadzi R, Sokol K, Santos-Rodríguez R, et al (2020) FACE: feasible and actionable counterfactual explanations. In: AIES ’20: AAAI/ACM conference on AI, ethics, and society, New York, NY, USA
– reference: Kapishnikov A, Bolukbasi T, Viégas FB, et al (2019) XRAI: better attributions through regions. In: 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South)
– reference: Kim B, Chacha CM, Shah JA (2015) Inferring team task plans from human meetings: a generative modeling approach with logic-based prior. J Artif Intell Res
– reference: Das A, Gupta C, Kovatchev V, et al (2022) Prototex: explaining model decisions with prototype tensors. In: Proceedings of the 60th annual meeting of the association for computational linguistics (vol. 1: long papers), ACL 2022, Dublin, Ireland
– reference: Cheng J, Dong L, Lapata M (2016) Long short-term memory-networks for machine reading. In: Proceedings of the 2016 conference on empirical methods in natural language processing, EMNLP 2016, Austin, Texas, USA
– reference: Chowdhury T, Rahimi R, Allan J (2022) Equi-explanation maps: concise and informative global summary explanations. In: 2022 ACM conference on fairness, accountability, and transparency, FAccT ’22
– reference: Koh PW, Liang P (2017) Understanding black-box predictions via influence functions. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia
– reference: Pezeshkpour P, Tian Y, Singh S (2019) Investigating robustness and interpretability of link prediction via adversarial modifications. In: 1st Conference on automated knowledge base construction, AKBC 2019, Amherst, MA, USA
– reference: Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. In: Proceedings of the 34th international conference on machine learning, ICML 2017, Sydney, NSW, Australia
– reference: Katehakis Jr MN, Veinott AF (1987) The multi-armed bandit problem: decomposition and computation. Math Oper Res
– reference: Zhang Y, Chen X (2020) Explainable recommendation: a survey and new perspectives. Found Trends Inf Retr
– reference: Karimi A, Barthe G, Balle B, et al (2020a) Model-agnostic counterfactual explanations for consequential decisions. In: The 23rd international conference on artificial intelligence and statistics, AISTATS 2020, Online [Palermo, Sicily, Italy]
– reference: Guidotti R, Monreale A, Giannotti F, et al (2019a) Factual and counterfactual explanations for black box decision making. IEEE Intell Syst
– reference: Kamakshi V, Gupta U, Krishnan NC (2021) PACE: posthoc architecture-agnostic concept extractor for explaining CNNs. In: International joint conference on neural networks, IJCNN 2021, Shenzhen, China
– reference: Kanamori K, Takagi T, Kobayashi K, et al (2020) DACE: distribution-aware counterfactual explanation by mixed-integer linear optimization. In: Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI 2020
– reference: Mothilal RK, Sharma A, Tan C (2020) Explaining machine learning classifiers through diverse counterfactual explanations. In: FAT* ’20: conference on fairness, accountability, and transparency, Barcelona, Spain
– reference: Yeh C, Kim B, Arik SÖ, et al (2020) On completeness-aware concept-based explanations in deep neural networks. In: Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, virtual
– reference: Zhang H, Torres F, Sicre R, et al (2023) Opti-cam: optimizing saliency maps for interpretability. CoRR arXiv:2301.07002
– reference: Petsiuk V, Das A, Saenko K (2018) RISE: randomized input sampling for explanation of black-box models. In: British machine vision conference 2018, BMVC 2018, Newcastle, UK
– reference: Anjomshoae S, Najjar A, Calvaresi D, et al (2019) Explainable agents and robots: Results from a systematic literature review. In: Proceedings of the 18th international conference on autonomous agents and multiagent systems, AAMAS ’19, Montreal, QC, Canada
– reference: Guidotti R (2021) Evaluating local explanation methods on ground truth. Artif Intell
– reference: Chen C, Li O, Tao D, et al (2019) This looks like that: deep learning for interpretable image recognition. In: Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, Vancouver, BC, Canada
– reference: Yuan H, Yu H, Gui S, et al (2020b) Explainability in graph neural networks: a taxonomic survey. arXiv preprint arXiv:2012.15445
– reference: Pasquale F (2015) The black box society: the secret algorithms that control money and information. Harvard University Press
– reference: FreitasAAComprehensible classification models: a position paperSIGKDD Explor201315111010.1145/2594473.2594475
– reference: Suissa-Peleg A, Haehn D, Knowles-Barley S, et al (2016) Automatic neural reconstruction from petavoxel of electron microscopy data. Microsc Microanal
– reference: Williams JJ, Kim J, Rafferty AN, et al (2016) AXIS: generating explanations at scale with learnersourcing and machine learning. In: Proceedings of the third ACM conference on learning @ Scale, L@S 2016, Edinburgh, Scotland, UK
– reference: Karimi A, Barthe G, Schölkopf B, et al (2020b) A survey of algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv preprint arXiv:2010.04050
– reference: Schwab P, Karlen W (2019) Cxplain: causal explanations for model interpretation under uncertainty. In: Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, Vancouver, BC, Canada
– reference: Abujabal A, Roy RS, Yahya M, et al (2017) QUINT: interpretable question answering over knowledge bases. In: Proceedings of the 2017 conference on empirical methods in natural language processing, EMNLP 2017, Copenhagen, Denmark—system demonstrations
– reference: Lampridis O, Guidotti R, Ruggieri S (2020) Explaining sentiment classification with synthetic exemplars and counter-exemplars. In: Discovery science—23rd international conference, DS 2020, Thessaloniki, Greece, Proceedings
– reference: Geler Z, Kurbalija V, Ivanovic M, et al (2020) Weighted KNN and constrained elastic distances for time-series classification. Expert Syst Appl
– reference: Došilović FK, Brčić M, Hlupić N (2018) Explainable artificial intelligence: a survey. In: 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO), IEEE, pp 0210–0215
– reference: Lee Y, Wei C, Cheng T, et al (2012) Nearest-neighbor-based approach to time-series classification. Decis Support Syst
– reference: Luss R, Chen P, Dhurandhar A, et al (2019) Generating contrastive explanations with monotonic attribute functions. arXiv preprint arXiv:1905.12698
– reference: GleicherMA framework for considering comprehensibility in modelingBig Data201642758810.1089/big.2016.0007
– reference: Guidotti R, Monreale A, Spinnato F, et al (2020b) Explaining any time series classifier. In: 2nd IEEE international conference on cognitive machine intelligence, CogMI 2020, Atlanta, GA, USA
– reference: Ming Y, Qu H, Bertini E (2019) Rulematrix: visualizing and understanding classifiers with rules. IEEE Trans Vis Comput Graph
– reference: Adadi A, Berrada M (2018) Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access
– reference: Doersch C (2016) Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908
– reference: Hand DJ, Till RJ (2001) A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn
– reference: Hvilshøj F, Iosifidis A, Assent I (2021) ECINN: efficient counterfactuals from invertible neural networks. In: BMVC. BMVA Press, p 43
– reference: VermeireTBrughmansDGoethalsSExplainable image classification with evidence counterfactualPattern Anal Appl202225231533510.1007/s10044-021-01055-y
– reference: DomingosPMKnowledge discovery via multiple modelsIntell Data Anal199821–418720210.3233/IDA-1998-2303
– reference: Tjoa E, Guan C (2019) A survey on explainable artificial intelligence (XAI): towards medical XAI. arXiv preprint arXiv:1907.07374
– reference: Blanco-Justicia A, Domingo-Ferrer J, Martínez S, et al (2020) Machine learning explainability via microaggregation and shallow decision trees. Knowl Based Syst
– reference: Plumb G, Molitor D, Talwalkar A (2018) Model agnostic supervised local explanations. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada
– reference: Wu Z, Ong DC (2021) Context-guided BERT for targeted aspect-based sentiment analysis. In: Thirty-fifth AAAI conference on artificial intelligence, AAAI 2021, thirty-third conference on innovative applications of artificial intelligence, IAAI 2021, the eleventh symposium on educational advances in artificial intelligence, EAAI 2021, virtual event
– reference: Chen J, Song L, Wainwright MJ, et al (2018) Learning to explain: an information-theoretic perspective on model interpretation. In: Proceedings of the 35th international conference on machine learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden
– reference: Wu Z, Pan S, Chen F, et al (2021b) A comprehensive survey on graph neural networks. IEEE Trans Neural Networks Learn Syst
– reference: Zafar MR, Khan NM (2019) DLIME: a deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems. arXiv preprint arXiv:1906.10263
– reference: Dhurandhar A, Chen P, Luss R, et al (2018) Explanations based on the missing: towards contrastive explanations with pertinent negatives. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada
– reference: Molnar C (2022) Model-agnostic interpretable machine learning. PhD thesis, Ludwig Maximilian University of Munich, Germany
– reference: Muhammad MB, Yeasin M (2020) Eigen-cam: Class activation map using principal components. In: 2020 International joint conference on neural networks, IJCNN 2020, Glasgow, UK
– reference: Guidotti R (2022) Counterfactual explanations and how to find them: literature review and benchmarking. DAMI, pp 1–55
– reference: Panigutti C, Beretta A, Giannotti F, et al (2022) Understanding the impact of explanations on advice-taking: a user study for ai-based clinical decision support systems. In: CHI ’22: CHI conference on human factors in computing systems, New Orleans, LA, USA
– reference: Chattopadhay A, Sarkar A, Howlader P, et al (2018) Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE winter conference on applications of computer vision (WACV), IEEE
– reference: Ghorbani A, Wexler J, Zou JY, et al (2019) Towards automatic concept-based explanations. In: Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, Vancouver, BC, Canada
– reference: Adebayo J, Muelly M, Liccardi I, et al (2020) Debugging tests for model explanations. In: Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, virtual
– reference: Aggarwal CC, Zhai C (2012) A survey of text classification algorithms. In: Mining text data. Springer, pp 163–222
– reference: Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell
– reference: CarvalhoDVPereiraEMCardosoJSMachine learning interpretability: a survey on methods and metricsElectronics20198883210.3390/electronics8080832
– reference: Danilevsky M, Qian K, Aharonov R, et al (2020) A survey of the state of explainable AI for natural language processing. In: Proceedings of the 1st conference of the Asia-Pacific chapter of the association for computational linguistics and the 10th international joint conference on natural language processing, AACL/IJCNLP 2020, Suzhou, China
– reference: Yang M, Kim B (2019) BIM: towards quantitative evaluation of interpretability methods with ground truth. arXiv preprint arXiv:1907.09701
– reference: Smilkov D, Thorat N, Kim B, et al (2017) Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825
– reference: Theissler A, Spinnato F, Schlegel U, et al (2022) Explainable AI for time series classification: a review, taxonomy and research directions. IEEE Access
– reference: Hase P, Bansal M (2020) Evaluating explainable AI: which algorithmic explanations help users predict model behavior? In: Proceedings of the 58th annual meeting of the association for computational linguistics, ACL 2020, Online
– reference: Adebayo J, Gilmer J, Muelly M, et al (2018) Sanity checks for saliency maps. In: Advances in neural information processing systems 31: annual conference on neural information processing systems 2018, NeurIPS 2018, Montréal, Canada
– reference: Arrieta AB, Rodríguez ND, Ser JD, et al (2020) Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fus
– reference: Shankaranarayana SM, Runje D (2019) ALIME: autoencoder based approach for local interpretability. In: Intelligent data engineering and automated learning—IDEAL 2019—20th international conference, Manchester, UK, proceedings, part I
– reference: Jain S, Wallace BC (2019) Attention is not explanation. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, NAACL-HLT 2019, Minneapolis, MN, USA, vol. 1 (long and short papers)
– reference: Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory
– reference: Pawelczyk M, Broelemann K, Kasneci G (2020) Learning model-agnostic counterfactual explanations for tabular data. In: WWW ’20: the web conference 2020, Taipei, Taiwan
– reference: Shi S, Zhang X, Fan W (2020) A modified perturbed sampling method for local interpretable model-agnostic explanation. arXiv preprint arXiv:2002.07434
– reference: Gilpin LH, Bau D, Yuan BZ, et al (2018) Explaining explanations: an overview of interpretability of machine learning. In: 5th IEEE international conference on data science and advanced analytics, DSAA 2018, Turin, Italy
– reference: Li H, Tian Y, Mueller K, et al (2019) Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation. Image Vis Comput
– reference: Panigutti C, Perotti A, Pedreschi D (2020) Doctor XAI: an ontology-based approach to black-box sequential data classification explanations. In: FAT* ’20: conference on fairness, accountability, and transparency, Barcelona, Spain
– reference: HastieTJTibshiraniRJGeneralized additive models1990CRC Press0747.62061
– reference: ByrneRMJohnson-LairdPIf and or: real and counterfactual possibilities in their truth and probabilityJ Exp Psychol Learn Mem Cogn202046476010.1037/xlm0000756
– reference: Lang O, Gandelsman Y, Yarom M, et al (2021) Explaining in style: training a GAN to explain a classifier in stylespace. In: ICCV. IEEE, pp 673–682
– reference: Gurumoorthy KS, Dhurandhar A, Cecchi GA, et al (2019) Efficient data representation by selecting prototypes with importance weights. In: 2019 IEEE international conference on data mining, ICDM 2019, Beijing, China
– reference: Lucic A, ter Hoeve MA, Tolomei G, et al (2022) Cf-gnnexplainer: counterfactual explanations for graph neural networks. In: International conference on artificial intelligence and statistics, AISTATS 2022, virtual event
– reference: Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: 3rd International conference on learning representations, ICLR 2015, San Diego, CA, USA, conference track proceedings
– reference: Kim B, Wattenberg M, Gilmer J, et al (2018) Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: Proceedings of the 35th international conference on machine learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden
– reference: Ley D, Mishra S, Magazzeni D (2022) Global counterfactual explanations: investigations, implementations and improvements. In: ICLR 2022 workshop on PAIR∧\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\wedge $$\end{document}2Struct: privacy, accountability, interpretability, robustness, reasoning on structured data. https://openreview.net/forum?id=Btbgp0dOWZ9
– reference: Huang Q, Yamada M, Tian Y, et al (2020) Graphlime: local interpretable model explanations for graph neural networks. arXiv preprint arXiv:2001.06216
– reference: Schwarzenberg R, Hübner M, Harbecke D, et al (2019) Layerwise relevance visualization in convolutional text graph classifiers. In: Proceedings of the thirteenth workshop on graph-based methods for natural language processing, TextGraphs@EMNLP 2019, Hong Kong
– reference: Goyal Y, Shalit U, Kim B (2019) Explaining classifiers with causal concept effect (cace). arXiv preprint arXiv:1907.07165
– reference: Artelt A, Hammer B (2019) On the computation of counterfactual explanations—a survey. arXiv preprint arXiv:1911.07749
– reference: Doshi-Velez F, Kim B (2017) Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608
– reference: MurdochWJSinghCKumbierKDefinitions, methods, and applications in interpretable machine learningProc Natl Acad Sci2019116442207122080403058410.1073/pnas.19006541161431.62266
– reference: Wang H, Wang Z, Du M, et al (2020) Score-cam: score-weighted visual explanations for convolutional neural networks. In: 2020 IEEE/CVF conference on computer vision and pattern recognition, CVPR workshops 2020, Seattle, WA, USA
– reference: Jeyakumar JV, Noor J, Cheng Y, et al (2020) How can I explain this to you? An empirical study of deep neural network explanation methods. In: Advances in neural information processing systems 33: annual conference on neural information processing systems 2020, NeurIPS 2020, virtual
– reference: Setzu M, Guidotti R, Monreale A, et al (2019) Global explanations with local scoring. In: Machine learning and knowledge discovery in databases—international workshops of ECML PKDD 2019, Würzburg, Germany, proceedings, part I
– reference: Mollas I, Bassiliades N, Tsoumakas G (2019) Lionets: local interpretation of neural networks through penultimate layer decoding. In: Machine learning and knowledge discovery in databases—international workshops of ECML PKDD 2019, Würzburg, Germany, proceedings, part I
– reference: Prado-Romero MA, Prenkaj B, Stilo G, et al (2022) A survey on graph counterfactual explanations: definitions, methods, evaluation. arXiv preprint arXiv:2210.12089
– reference: Ribeiro MT, Singh S, Guestrin C (2016) “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, USA
– reference: Samek W, Montavon G, Vedaldi A, et al (eds) (2019) Explainable AI: interpreting, explaining and visualizing deep learning, lecture notes in computer science, vol 11700. Springer
– reference: Shen W, Wei Z, Huang S, et al (2021) Interpretable compositional convolutional neural networks. In: Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI 2021, virtual event/Montreal, Canada
– reference: Yuan H, Yu H, Gui S, et al (2020c) Explainability in graph neural networks: a taxonomic survey. arXiv preprint arXiv:2012.15445
– reference: Craven MW, Shavlik JW (1995) Extracting tree-structured representations of trained networks. In: Advances in neural information processing systems 8, NIPS, Denver, CO, USA
– reference: Puri I, Dhurandhar A, Pedapati T, et al (2021) Cofrnets: interpretable neural architecture inspired by continued fractions. In: Advances in neural information processing systems 34: annual conference on neural information processing systems 2021, NeurIPS 2021, virtual
– reference: FriedmanJPopescuBEPredictive learning via rule ensemblesAnn Appl Stat20082916954252217510.1214/07-AOAS1481149.62051
– reference: Cai L, Ji S (2020) A multi-scale approach for graph link prediction. In: The thirty-fourth AAAI conference on artificial intelligence, AAAI 2020, the thirty-second innovative applications of artificial intelligence conference, IAAI 2020, the tenth AAAI symposium on educational advances in artificial intelligence, EAAI 2020, New York, NY, USA
– reference: Zhou Y, Hooker G (2016) Interpreting models via single tree approximation. arXiv preprint arXiv:1610.09036
– reference: Looveren AV, Klaise J (2021) Interpretable counterfactual explanations guided by prototypes. In: Machine learning and knowledge discovery in databases. Research track—European conference, ECML PKDD 2021, Bilbao, Spain, proceedings, part II
– reference: Ribeiro MT, Singh S, Guestrin C (2018) Anchors: High-precision model-agnostic explanations. In: Proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA
– reference: Guidotti R, Monreale A, Matwin S, et al (2019b) Black box explanation by learning image exemplars in the latent feature space. In: Machine learning and knowledge discovery in databases—European conference, ECML PKDD 2019, Würzburg, Germany, proceedings, part I
– reference: Chipman H, George E, McCulloh R (1998) Making sense of a forest of trees. Comput Sci Stat
– reference: Fong R, Patrick M, Vedaldi A (2019) Understanding deep networks via extremal perturbations and smooth masks. In: 2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul, Korea (South)
– reference: Li O, Liu H, Chen C, et al (2018) Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. In: Proceedings of the thirty-second AAAI conference on artificial intelligence, (AAAI-18), the 30th innovative applications of artificial intelligence (IAAI-18), and the 8th AAAI symposium on educational advances in artificial intelligence (EAAI-18), New Orleans, Louisiana, USA
– reference: Nori H, Jenkins S, Koch P, et al (2019) Interpretml: a unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223
– reference: Wachter S, Mittelstadt BD, Russell C (2017) Counterfactual explanations without opening the black box: automated decisions and the GDPR. arXiv preprint arXiv:1711.00399
– reference: SnyderHLiterature review as a research methodology: an overview and guidelinesJ Bus Res201910433333910.1016/j.jbusres.2019.07.039
– reference: Verma S, Dickerson JP, Hines K (2020) Counterfactual explanations for machine learning: a review. arXiv preprint arXiv:2010.10596
– reference: Srivastava S, Labutov I, Mitchell TM (2017) Joint concept learning and semantic parsing from natural language explanations. In: Proceedings of the 2017 conference on empirical methods in natural language processing, EMNLP 2017, Copenhagen, Denmark
– reference: Chowdhary K (2020) Natural language processing. In: Fundamentals of artificial intelligence. Springer, pp 603–649
– reference: Lapuschkin S, Wäldchen S, Binder A, et al (2019) Unmasking clever hans predictors and assessing what machines really learn. arXiv preprint arXiv:1902.10178
– reference: Letham B, Rudin C, McCormick TH, et al (2015) Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. arXiv preprint arXiv:1511.01644
– reference: Anjomshoae S, Kampik T, Främling K (2020) Py-ciu: a python library for explaining machine learning predictions using contextual importance and utility. In: IJCAI-PRICAI 2020 workshop on explainable artificial intelligence (XAI)
– reference: Selvaraju RR, Cogswell M, Das A, et al (2020) Grad-cam: Visual explanations from deep networks via gradient-based localization. Int J Comput Vis
– ident: 933_CR29
– ident: 933_CR104
– ident: 933_CR171
  doi: 10.1145/3394486.3403085
– ident: 933_CR58
– ident: 933_CR169
  doi: 10.32614/CRAN.package.sbrl
– ident: 933_CR73
– volume: 8
  start-page: 832
  issue: 8
  year: 2019
  ident: 933_CR26
  publication-title: Electronics
  doi: 10.3390/electronics8080832
– ident: 933_CR96
– ident: 933_CR9
– ident: 933_CR38
– ident: 933_CR138
  doi: 10.1007/978-3-030-28954-6
– ident: 933_CR15
– ident: 933_CR68
  doi: 10.5220/0010840500003123
– ident: 933_CR94
  doi: 10.1016/j.dss.2011.12.014
– ident: 933_CR135
  doi: 10.1109/TKDE.2007.190734
– volume: 3
  start-page: 4
  issue: 1
  year: 2020
  ident: 933_CR21
  publication-title: SMU Data Sci Rev
– ident: 933_CR127
– ident: 933_CR67
– ident: 933_CR76
– ident: 933_CR30
– volume-title: Generalized additive models
  year: 1990
  ident: 933_CR70
– ident: 933_CR24
– ident: 933_CR77
  doi: 10.1109/IJCNN52387.2021.9534369
– ident: 933_CR136
– ident: 933_CR153
– ident: 933_CR106
  doi: 10.1145/3447548.3467265
– ident: 933_CR25
  doi: 10.1093/comjnl/bxl018
– ident: 933_CR174
– ident: 933_CR175
  doi: 10.1561/9781680836592
– ident: 933_CR95
  doi: 10.1214/15-AOAS848
– ident: 933_CR168
– ident: 933_CR64
  doi: 10.1609/aaai.v34i09.7116
– ident: 933_CR101
– ident: 933_CR10
– ident: 933_CR108
  doi: 10.25300/MISQ/2014/38.1.04
– ident: 933_CR123
  doi: 10.1145/3366423.3380087
– ident: 933_CR53
  doi: 10.1016/j.eswa.2020.113829
– volume: 4
  start-page: 75
  issue: 2
  year: 2016
  ident: 933_CR56
  publication-title: Big Data
  doi: 10.1089/big.2016.0007
– ident: 933_CR143
  doi: 10.1016/j.artint.2021.103457
– ident: 933_CR119
  doi: 10.24963/ijcai.2021/396
– ident: 933_CR121
  doi: 10.1145/3491102.3502104
– ident: 933_CR49
– ident: 933_CR147
– ident: 933_CR84
  doi: 10.1613/jair.4496
– ident: 933_CR87
– ident: 933_CR151
  doi: 10.18653/v1/D17-1161
– ident: 933_CR99
  doi: 10.1016/j.imavis.2019.02.005
– ident: 933_CR75
– ident: 933_CR110
  doi: 10.1016/j.artint.2018.07.007
– ident: 933_CR4
– ident: 933_CR90
  doi: 10.1145/2939672.2939874
– ident: 933_CR98
– ident: 933_CR177
– ident: 933_CR158
– ident: 933_CR91
  doi: 10.1007/978-3-030-61527-7_24
– ident: 933_CR13
– ident: 933_CR7
  doi: 10.24963/ijcai.2020/63
– ident: 933_CR39
  doi: 10.18653/v1/2022.acl-long.213
– ident: 933_CR42
– ident: 933_CR163
  doi: 10.1145/2876034.2876042
– ident: 933_CR133
  doi: 10.1145/2939672.2939778
– ident: 933_CR18
  doi: 10.1214/11-AOAS495
– ident: 933_CR22
  doi: 10.24963/ijcai.2019/876
– ident: 933_CR65
  doi: 10.1109/CogMI50398.2020.00029
– ident: 933_CR129
– ident: 933_CR165
  doi: 10.18653/v1/2021.acl-long.523
– ident: 933_CR130
– ident: 933_CR72
  doi: 10.18653/v1/2020.acl-demos.22
– ident: 933_CR113
– ident: 933_CR172
– ident: 933_CR12
  doi: 10.18653/v1/W17-5221
– ident: 933_CR122
  doi: 10.4159/harvard.9780674736061
– ident: 933_CR47
  doi: 10.23919/MIPRO.2018.8400040
– ident: 933_CR78
  doi: 10.24963/ijcai.2020/395
– ident: 933_CR145
  doi: 10.24963/ijcai.2021/409
– ident: 933_CR118
– volume: 25
  start-page: 315
  issue: 2
  year: 2022
  ident: 933_CR160
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-021-01055-y
– ident: 933_CR107
  doi: 10.1609/aaai.v35i15.17594
– ident: 933_CR154
  doi: 10.1145/3412815.3416893
– ident: 933_CR124
– ident: 933_CR81
– ident: 933_CR83
  doi: 10.1609/aaai.v35i13.17377
– ident: 933_CR162
  doi: 10.1109/CVPRW50498.2020.00020
– ident: 933_CR33
  doi: 10.1089/big.2016.0047
– ident: 933_CR117
  doi: 10.1109/CVPR46437.2021.01469
– ident: 933_CR89
– ident: 933_CR149
– ident: 933_CR152
  doi: 10.1017/S1431927616003536
– ident: 933_CR54
– volume: 116
  start-page: 22071
  issue: 44
  year: 2019
  ident: 933_CR116
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1900654116
– ident: 933_CR55
  doi: 10.1109/DSAA.2018.00018
– ident: 933_CR34
  doi: 10.1007/978-81-322-3972-7_19
– ident: 933_CR111
  doi: 10.1109/TVCG.2018.2864812
– ident: 933_CR128
  doi: 10.1145/3375627.3375850
– ident: 933_CR63
  doi: 10.1145/3236009
– ident: 933_CR20
  doi: 10.1145/775047.775113
– ident: 933_CR50
  doi: 10.1109/ICCV.2019.00304
– ident: 933_CR134
  doi: 10.1609/aaai.v32i1.11491
– ident: 933_CR100
– ident: 933_CR40
– ident: 933_CR140
  doi: 10.18653/v1/D19-5308
– ident: 933_CR114
  doi: 10.1145/3351095.3372850
– ident: 933_CR11
– volume: 10
  issue: 7
  year: 2015
  ident: 933_CR16
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130140
– ident: 933_CR112
  doi: 10.1007/978-3-030-43823-4_23
– ident: 933_CR41
  doi: 10.1109/WACV45572.2020.9093360
– ident: 933_CR60
  doi: 10.1007/s10618-022-00831-6
– ident: 933_CR86
– ident: 933_CR126
  doi: 10.18653/v1/N19-1337
– ident: 933_CR146
– volume: 104
  start-page: 333
  year: 2019
  ident: 933_CR150
  publication-title: J Bus Res
  doi: 10.1016/j.jbusres.2019.07.039
– ident: 933_CR61
  doi: 10.1109/MIS.2019.2957223
– ident: 933_CR132
– ident: 933_CR166
  doi: 10.1109/TNNLS.2020.2978386
– ident: 933_CR80
– ident: 933_CR66
  doi: 10.1109/ICDM.2019.00036
– ident: 933_CR105
– volume: 46
  start-page: 760
  issue: 4
  year: 2020
  ident: 933_CR23
  publication-title: J Exp Psychol Learn Mem Cogn
  doi: 10.1037/xlm0000756
– ident: 933_CR115
  doi: 10.1109/IJCNN48605.2020.9206626
– ident: 933_CR141
  doi: 10.1007/s11263-019-01228-7
– ident: 933_CR79
  doi: 10.1109/ICCV.2019.00505
– ident: 933_CR5
– volume: 2
  start-page: 916
  year: 2008
  ident: 933_CR52
  publication-title: Ann Appl Stat
  doi: 10.1214/07-AOAS148
– ident: 933_CR102
  doi: 10.1145/3351095.3372824
– ident: 933_CR97
– ident: 933_CR157
– ident: 933_CR176
  doi: 10.2139/ssrn.4476687
– volume: 2
  start-page: 187
  issue: 1–4
  year: 1998
  ident: 933_CR44
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-1998-2303
– ident: 933_CR14
– ident: 933_CR131
  doi: 10.18653/v1/P19-1487
– volume: 15
  start-page: 1
  issue: 1
  year: 2013
  ident: 933_CR51
  publication-title: SIGKDD Explor
  doi: 10.1145/2594473.2594475
– ident: 933_CR28
  doi: 10.18653/v1/2022.emnlp-main.484
– ident: 933_CR48
  doi: 10.1007/978-3-030-28730-6_4
– ident: 933_CR164
– ident: 933_CR155
  doi: 10.1016/j.knosys.2017.02.023
– ident: 933_CR62
  doi: 10.1007/978-3-030-46150-8_12
– ident: 933_CR19
  doi: 10.1016/j.knosys.2020.105532
– ident: 933_CR93
  doi: 10.1038/s41467-019-08987-4
– ident: 933_CR142
  doi: 10.1007/978-3-030-43823-4_14
– ident: 933_CR137
  doi: 10.1038/s42256-019-0048-x
– ident: 933_CR8
– ident: 933_CR139
– ident: 933_CR173
– ident: 933_CR59
  doi: 10.1016/j.artint.2020.103428
– ident: 933_CR156
  doi: 10.1109/ACCESS.2022.3207765
– ident: 933_CR170
– ident: 933_CR92
  doi: 10.1109/ICCV48922.2021.00073
– ident: 933_CR120
  doi: 10.1145/3351095.3372855
– ident: 933_CR17
– ident: 933_CR27
  doi: 10.1109/WACV.2018.00097
– ident: 933_CR46
– ident: 933_CR69
  doi: 10.18653/v1/2020.acl-main.491
– ident: 933_CR45
  doi: 10.1109/CVPR52688.2022.01002
– ident: 933_CR125
– ident: 933_CR35
  doi: 10.1145/3531146.3533112
– ident: 933_CR71
  doi: 10.1145/3306618.3314273
– ident: 933_CR148
– ident: 933_CR167
– ident: 933_CR88
– ident: 933_CR31
  doi: 10.18653/v1/D16-1053
– ident: 933_CR103
– ident: 933_CR32
– ident: 933_CR1
  doi: 10.18653/v1/D17-2011
– ident: 933_CR3
– ident: 933_CR57
– ident: 933_CR161
  doi: 10.2139/ssrn.3063289
– ident: 933_CR74
– ident: 933_CR159
– ident: 933_CR36
  doi: 10.1109/TIT.1967.1053964
– ident: 933_CR6
  doi: 10.1007/978-1-4614-3223-4_6
– ident: 933_CR109
  doi: 10.2139/ssrn.878283
– ident: 933_CR2
  doi: 10.1109/ACCESS.2018.2870052
– ident: 933_CR37
– ident: 933_CR43
– ident: 933_CR144
  doi: 10.1007/978-3-030-33607-3_49
– ident: 933_CR82
  doi: 10.1287/moor.12.2.262
– ident: 933_CR85
SSID ssj0005230
Score 2.6735973
Snippet The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1719
SubjectTerms Academic Surveys and Tutorials
Art exhibits
Artificial Intelligence
Black boxes
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Decision making
Ethics
Information Storage and Retrieval
Machine learning
Mathematical models
Physics
Special Issue on Explainable and Interpretable Machine Learning and Data Mining
Statistics for Engineering
Trust
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS8MwGA-6Xbz4FqdTcvCmwaZJ0_QkbmwMwSHiYLeSJikeZjvXTeZ_b9KmVgV36iFtDt_X7_34AXClGREhDjTivjIBCuUpEh7XSBCacCwF0WXz-OOYjSb0YRpMXcKtcG2VtU4sFbXKpc2R3_rGrpjIiXB2N39HFjXKVlcdhMY2aBsVzHkLtHuD8dPzjyYPUs0Jc4oCjj03NuOG5xjmyNgsVIb1KPptmhp_80-JtLQ8w32w61xGeF_x-ABs6ewQ7NVwDNBJ5xHo98zz9U2U2W8oMgWL1eJDf8I8hXo9n4kq8Qcr0OgCGncVJjZ_B5N8DUtInOIYTIaDl_4IOYwEJO0MK8KcCU8bueRMYkWMsdFhmnKVhr7yE2LCI608xu0OG1tQi0Jfa6Y8hUWQSmVs-QloZXmmTwFUVDJfhhGXUlHFdRJEVFIiA3OgqC87ANfkiaVbIG5xLGZxs_rYkjQ2JI1LksZRB1x_fzOv1mdsfLtbUz12olTEDeM74KbmRHP8_21nm287Bzt-yXzbL9YFreVipS-Mg7FMLt1f9AXiy8p2
  priority: 102
  providerName: ProQuest
Title Benchmarking and survey of explanation methods for black box models
URI https://link.springer.com/article/10.1007/s10618-023-00933-9
https://www.proquest.com/docview/2853132386
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-4ieDFj6k4P0YO3jTQpGmaHrexTRRFxIGeSpqkeJjbsE7mf2-Sdk5FBS8tNGkgL3m87_cDODE8lDGJDBZUWwOFiRzLQBgsQ5YJomRofPL41TU_H7KL--i-apPjamG-xe9diRsnAlvJgr3xjZMarEYkjB1MQ5d3P6VzhGVFsGA4EiSoCmR-XuOrEFpqlt-CoV7G9Ldgo1IOUbs8zW1YMeMGbC6AF1DFhw1Y83mbqtiBbsd-eXyS3uON5FijYvb8at7QJEdmPh3J0tmHSqDoAlkVFWXOZ4eyyRx5GJxiF4b93l33HFe4CFi5ulVMBJeBsbwouCI6tALGxHkudB5TTbPQmkRGB1y4vjUuiJbE1BiuA01klCtt5fce1MeTsdkHpJniVMWJUEozLUwWJUyxUEV2QDOqmkAWhEpV1TTcYVeM0mW7Y0fc1BI39cRNkyacfvwzLVtm_Dn7aEH_tGKfIqVWibBmst1gE84WZ7Ic_n21g_9NP4R16q-Fyxk7gvrL88wcWyXjJWtBTfQHLVhtDx4ue_bd6V3f3Lb8nbPPIW2_AwBOydM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07U9wwEN6BSxGaPHgMxysqoEo02JIsywXDEMjleFYwQ2dkSR4KcndgIMef4jeykm0uMBM6KheyVaw-70u7-wGsO8l1GieOKmYxQBGqpDpSjmouChUbzV0oHj8-kf0zcXCenE_BY9sL48sqW50YFLUdGp8j32RoVzBy4kpuj66pZ43yt6sthUYNi0P38BdDtmprfw_Pd4Ox3q_T3T5tWAWo8V2fNFZSRw6RrKSJLUf17NKyVLZMmWUFx4DC2UgqP_XFX0FlKXNO2sjGOimNReuH-07DB8HRkvvO9N7vf0pKeN2VrARNVBw1TTpNq56MFUULSUMSgWYvDeHEu311IRvsXO8LfGocVLJTI-orTLnBLHxuyR9IowvmYPcnPi__6JBrJ3pgSXV3c-8eyLAkbjy60nWakdQU1RVB55gUPltIiuGYBAKeah7O3kV2C9AZDAduEYgVRjKTZsoYK6xyRZIJI7hJcMEKZroQt-LJTTOu3LNmXOWTQctepDmKNA8izbMufH_-ZlQP63jz7ZVW6nnz41b5BGZd-NGexGT5_7stvb3bN_jYPz0-yo_2Tw6XYYYFIPhKtRXo3N7cuVV0bW6LtYAnAhfvDeAndmcEZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6aaEPdSkPH8qJWiSO4zgHVPFasV1YraoicUsd21EPNLsQaOGv8es6ThwCSN0bpxyc-DD-Mi_PzAfw2YpIJWFsqWQGAxQuC6oCaamKeC5DrSJbF4-fjMXRKf92Fp8twF3bC-PKKludWCtqM9UuR77N0K5g5BRJsV34sojJweDr7II6Bil309rSaTQQGdnbvxi-VTvDAzzrTcYGhz_2j6hnGKDadYDSUAoVWES1FDo0EapqmxSFNEXCDMsjDC6sCYR0E2DcdVSaMGuFCUyo4kIbtIS47wtYTFxU1IPFvcPx5PuDApOo6VGWnMYyDHzLjm_cE6GkaC9pnVKg6WOz2Pm6T65na6s3WILX3l0luw2-lmHBlm_hTUsFQbxmeAf7e_j89VvVmXeiSkOq68s_9pZMC2JvZueqSTqShrC6Iugqk9zlDkk-vSE1HU_1Hk6fRXofoFdOS_sRiOFaMJ2kUmvDjbR5nHLNIx3jguFM9yFsxZNpP7zccWicZ93YZSfSDEWa1SLN0j5s3X8za0Z3zH17tZV65n_jKutA14cv7Ul0y__fbWX-bhvwEsGbHQ_Ho0_witU4cGVrq9C7ury2a-jnXOXrHlAEfj43hv8BNBcJ9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+and+survey+of+explanation+methods+for+black+box+models&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Bodria%2C+Francesco&rft.au=Giannotti%2C+Fosca&rft.au=Guidotti%2C+Riccardo&rft.au=Naretto%2C+Francesca&rft.date=2023-09-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=37&rft.issue=5&rft.spage=1719&rft.epage=1778&rft_id=info:doi/10.1007%2Fs10618-023-00933-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_023_00933_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon