Benchmarking and survey of explanation methods for black box models

The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how these models work in an understandable way to users and decision makers. Unsurprisingly, the state-of-the-art exhibits currently a plethora of...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 37; no. 5; pp. 1719 - 1778
Main Authors Bodria, Francesco, Giannotti, Fosca, Guidotti, Riccardo, Naretto, Francesca, Pedreschi, Dino, Rinzivillo, Salvatore
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how these models work in an understandable way to users and decision makers. Unsurprisingly, the state-of-the-art exhibits currently a plethora of explainers providing many different types of explanations. With the aim of providing a compass for researchers and practitioners, this paper proposes a categorization of explanation methods from the perspective of the type of explanation they return, also considering the different input data formats. The paper accounts for the most representative explainers to date, also discussing similarities and discrepancies of returned explanations through their visual appearance. A companion website to the paper is provided as a continuous update to new explainers as they appear. Moreover, a subset of the most robust and widely adopted explainers, are benchmarked with respect to a repertoire of quantitative metrics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1384-5810
1573-756X
DOI:10.1007/s10618-023-00933-9