SERPENT/SUBCHANFLOW COUPLED BURNUP CALCULATIONS FOR VVER FUEL ASSEMBLIES

The continuous improvement in nuclear industry safety standards and reactor designers’ and operators’ commercial goals represent a push for the development of highly accurate methodologies in reactor physics. This fact, combined with the availability of vast computational resources, allowed the deve...

Full description

Saved in:
Bibliographic Details
Published inEPJ Web of conferences Vol. 247; p. 4005
Main Authors Ferraro, Diego, García, Manuel, Imke, Uwe, Valtavirta, Ville, Tuominen, Riku, Leppänen, Jaakko, Sanchez-Espinoza, Víctor
Format Journal Article
LanguageEnglish
Published EDP Sciences 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The continuous improvement in nuclear industry safety standards and reactor designers’ and operators’ commercial goals represent a push for the development of highly accurate methodologies in reactor physics. This fact, combined with the availability of vast computational resources, allowed the development of a wide range of coupled state-of-the-art neutronic-thermal-hydraulic calculation tools worldwide during last decade. Under this framework, the McSAFE European Union project is a coordinated effort aimed to develop multiphysics tools based on Monte Carlo neutron transport and subchannel thermal-hydraulics codes, suitable for high-fidelity calculations for PWR and VVER reactors. This work presents the results for a pin-by-pin coupled burnup calculation using the Serpent 2 code (developed by VTT, Finland) and the subchannel thermal-hydraulics code SUBCHANFLOW (SCF, developed by KIT, Germany) for two different VVER-type fuel assembly types. For such purpose, a recently refurbished master-slave coupling scheme is considered, which provides several new features such as burnup and transient calculations capabilities for square and hexagonal geometries. Main aspects of this coupling are presented for this burnup case, showing some of the capabilities now available. On top of that, the obtained global results are compared with available published data from a similar high-fidelity approach for the same FA design, showing a good agreement. Finally, a brief analysis of the main resources requirement and main bottlenecks identification are also included. The results presented here provide valuable insights and pave the way to tackle the final goals of the McSAFE project, which includes full-core pin-by-pin depletion calculation within a fully coupled MC-TH approach.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/202124704005