AdamGraph: Adaptive Attention-Modulated Graph Network for EEG Emotion Recognition
The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology vari...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 55; no. 5; pp. 2038 - 2051 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2025.3550191 |
Cover
Loading…
Abstract | The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology variability in capturing the dependencies between channels, which may limit the performance of EEG emotion recognition. To tackle this issue, this article proposes an adaptive attention-modulated graph network (AdamGraph) to enhance the subject adaptability of EEG emotion recognition against connection variability and representation variability. Specifically, an attention-modulated graph connection module is proposed to explicitly capture the individual important relationships among channels adaptively. Through modulating the attention matrix of individual functional connections using spatial connections based on prior knowledge, the attention-modulated weights can be learned to construct individual connections adaptively, thereby mitigating individual differences. Besides, a deep node-graph representation learning module is designed to extract long-range interaction characteristics among channels and alleviate the over-smoothing problem of representations. Furthermore, a graph domain co-regularized learning module is imposed to tackle the individual distribution discrepancies in connection and representations across different domains. Extensive experiments on three public EEG emotion datasets, i.e., SEED, DREAMER, and MPED, validate the superior performance of AdamGraph compared with state-of-the-art methods. |
---|---|
AbstractList | The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology variability in capturing the dependencies between channels, which may limit the performance of EEG emotion recognition. To tackle this issue, this article proposes an adaptive attention-modulated graph network (AdamGraph) to enhance the subject adaptability of EEG emotion recognition against connection variability and representation variability. Specifically, an attention-modulated graph connection module is proposed to explicitly capture the individual important relationships among channels adaptively. Through modulating the attention matrix of individual functional connections using spatial connections based on prior knowledge, the attention-modulated weights can be learned to construct individual connections adaptively, thereby mitigating individual differences. Besides, a deep node-graph representation learning module is designed to extract long-range interaction characteristics among channels and alleviate the over-smoothing problem of representations. Furthermore, a graph domain co-regularized learning module is imposed to tackle the individual distribution discrepancies in connection and representations across different domains. Extensive experiments on three public EEG emotion datasets, i.e., SEED, DREAMER, and MPED, validate the superior performance of AdamGraph compared with state-of-the-art methods. The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology variability in capturing the dependencies between channels, which may limit the performance of EEG emotion recognition. To tackle this issue, this article proposes an adaptive attention-modulated graph network (AdamGraph) to enhance the subject adaptability of EEG emotion recognition against connection variability and representation variability. Specifically, an attention-modulated graph connection module is proposed to explicitly capture the individual important relationships among channels adaptively. Through modulating the attention matrix of individual functional connections using spatial connections based on prior knowledge, the attention-modulated weights can be learned to construct individual connections adaptively, thereby mitigating individual differences. Besides, a deep node-graph representation learning module is designed to extract long-range interaction characteristics among channels and alleviate the over-smoothing problem of representations. Furthermore, a graph domain co-regularized learning module is imposed to tackle the individual distribution discrepancies in connection and representations across different domains. Extensive experiments on three public EEG emotion datasets, i.e., SEED, DREAMER, and MPED, validate the superior performance of AdamGraph compared with state-of-the-art methods.The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology variability in capturing the dependencies between channels, which may limit the performance of EEG emotion recognition. To tackle this issue, this article proposes an adaptive attention-modulated graph network (AdamGraph) to enhance the subject adaptability of EEG emotion recognition against connection variability and representation variability. Specifically, an attention-modulated graph connection module is proposed to explicitly capture the individual important relationships among channels adaptively. Through modulating the attention matrix of individual functional connections using spatial connections based on prior knowledge, the attention-modulated weights can be learned to construct individual connections adaptively, thereby mitigating individual differences. Besides, a deep node-graph representation learning module is designed to extract long-range interaction characteristics among channels and alleviate the over-smoothing problem of representations. Furthermore, a graph domain co-regularized learning module is imposed to tackle the individual distribution discrepancies in connection and representations across different domains. Extensive experiments on three public EEG emotion datasets, i.e., SEED, DREAMER, and MPED, validate the superior performance of AdamGraph compared with state-of-the-art methods. |
Author | Chen, Bianna Philip Chen, C. L. Zhang, Tong |
Author_xml | – sequence: 1 givenname: C. L. orcidid: 0000-0001-5451-7230 surname: Philip Chen fullname: Philip Chen, C. L. organization: Guangdong Provincial Key Laboratory of Computational AI Models and Cognitive Intelligence, the School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Bianna orcidid: 0009-0007-5646-3230 surname: Chen fullname: Chen, Bianna organization: Guangdong Provincial Key Laboratory of Computational AI Models and Cognitive Intelligence, the School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Tong orcidid: 0000-0002-7025-6365 surname: Zhang fullname: Zhang, Tong email: tony@scut.edu.cn organization: Guangdong Provincial Key Laboratory of Computational AI Models and Cognitive Intelligence, the School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40146643$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkE1PwzAMhiM0xMbYD0BCqEcuHXHSJg23MZWBNECgceAU9SOBQtuMpgXx70nZmPDFr6zHlvUcokFtaoXQMeApABbnq_nz5ZRgEk5pGGIQsIdGBFjkE8LDwS4zPkQTa9-wq8iNRHSAhgGGgLGAjtDDLE-qRZOsXy88F9dt8am8Wduqui1M7d-avCuTVuXeL-PdqfbLNO-eNo0XxwsvrkzPeY8qMy910ecjtK-T0qrJto_R01W8ml_7y_vFzXy29DPCWetHTGtIOcaUpjQMWESBRIS5xzLhEk0ABKUAuU55hqkKNRaZDrhIMSGUAx2js83ddWM-OmVbWRU2U2WZ1Mp0VlKIiMMJxw493aJdWqlcrpuiSppv-afBAbABssZY2yi9QwDL3rbsbcvettzadjsnm51CKfWPFwEloaA_rp53hA |
CODEN | ITCEB8 |
Cites_doi | 10.1109/tmm.2025.3535344 10.3389/fnins.2021.778488 10.1109/TNNLS.2023.3264617 10.1609/aaai.v32i1.11604 10.1109/TCDS.2022.3147839 10.1109/tcyb.2025.3542059 10.1109/TPAMI.2021.3132068 10.1109/TCDS.2020.2999337 10.1109/TAFFC.2022.3170428 10.1109/TAFFC.2020.3013711 10.1109/TAI.2024.3403953 10.1109/TAFFC.2024.3433613 10.1109/JSEN.2018.2883497 10.1109/TAFFC.2018.2885474 10.1111/j.1469-8986.2009.00958.x 10.1109/TAFFC.2019.2922912 10.1109/TAFFC.2019.2937768 10.1109/TPAMI.2020.3029948 10.1109/TCYB.2022.3178370 10.1093/cercor/bhi016 10.1109/tcss.2024.3488201 10.1109/ICMB.2014.29 10.1109/TCYB.2025.3531657 10.1016/j.ins.2022.07.121 10.1109/TCYB.2024.3390805 10.1049/cit2.12174 10.4018/978-1-6684-3947-0.ch011 10.1109/JBHI.2022.3210158 10.1109/TNN.2010.2091281 10.5555/2946645.2946704 10.1109/TCYB.2017.2788081 10.3390/e24101322 10.1016/j.inffus.2024.102522 10.1109/taffc.2025.3527459 10.1109/TAMD.2015.2431497 10.1109/TAFFC.2018.2817622 10.1109/TCYB.2019.2904052 10.1007/978-3-319-49409-8_35 10.1109/tnnls.2022.3225855 10.1109/TAFFC.2024.3371540 10.1109/TAFFC.2024.3349770 10.1109/ACCESS.2019.2891579 10.1007/978-3-319-46681-1_21 10.1109/JBHI.2017.2688239 10.1609/aaai.v38i1.27819 10.1109/TCDS.2016.2587290 10.1109/TAFFC.2021.3064940 10.1109/tcds.2024.3470248 10.1109/TCYB.2024.3393020 10.24963/ijcai.2018/216 10.1016/j.bspc.2022.103687 10.1016/j.bica.2018.04.012 10.1007/978-3-030-04221-9_36 10.1109/TCYB.2024.3410844 10.3389/fncom.2019.00087 10.1109/TAFFC.2020.2994159 10.1109/TCYB.2022.3198997 10.1023/A:1018628609742 10.1609/aaai.v34i03.5656 10.1109/JBHI.2024.3416944 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TCYB.2025.3550191 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 2051 |
ExternalDocumentID | 40146643 10_1109_TCYB_2025_3550191 10943259 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams grantid: 2019ZT08X214 – fundername: National Natural Science Foundation of China grantid: 62222603 funderid: 10.13039/501100001809 – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2023B0303030001 – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2023B0303030001 funderid: 10.13039/501100012166 – fundername: STI2030-Major Projects grant from the Ministry of Science and Technology of the People’s Republic of China grantid: 2021ZD0200700 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c276t-86ff1b70033b35468312826014c91283a1193311dfb7c03e5f09cf479b0223713 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Wed Jul 02 05:13:42 EDT 2025 Fri Apr 25 03:24:55 EDT 2025 Tue Jul 01 04:58:22 EDT 2025 Wed Aug 27 02:04:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c276t-86ff1b70033b35468312826014c91283a1193311dfb7c03e5f09cf479b0223713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5451-7230 0000-0002-7025-6365 0009-0007-5646-3230 |
PMID | 40146643 |
PQID | 3182479270 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3182479270 ieee_primary_10943259 crossref_primary_10_1109_TCYB_2025_3550191 pubmed_primary_40146643 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref58 ref53 ref52 ref11 ref10 ref54 ref16 Defferrard (ref44); 29 ref19 ref51 ref50 Tzeng (ref55) 2014 ref46 ref45 ref48 ref47 ref42 ref41 ref43 ref49 ref8 ref7 ref9 ref4 Kipf (ref35) ref3 ref6 Estrach (ref34) ref5 ref40 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 Van der Maaten (ref70) 2008; 9 Rong (ref14) Veliˇckovi´c (ref39) Liu (ref18) ref24 ref68 ref23 ref67 ref26 ref25 Wagh (ref37) ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Chen (ref17) ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref20 doi: 10.1109/tmm.2025.3535344 – ident: ref57 doi: 10.3389/fnins.2021.778488 – ident: ref16 doi: 10.1109/TNNLS.2023.3264617 – ident: ref36 doi: 10.1609/aaai.v32i1.11604 – start-page: 367 volume-title: Proc. Mach. Learn. Healthcare ident: ref37 article-title: EEG-GCNN: Augmenting electroencephalogram-based neurological disease diagnosis using a domain-guided graph convolutional neural network – ident: ref47 doi: 10.1109/TCDS.2022.3147839 – ident: ref4 doi: 10.1109/tcyb.2025.3542059 – ident: ref15 doi: 10.1109/TPAMI.2021.3132068 – ident: ref69 doi: 10.1109/TCDS.2020.2999337 – ident: ref29 doi: 10.1109/TAFFC.2022.3170428 – start-page: 21778 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref18 article-title: Structural re-weighting improves graph domain adaptation – ident: ref62 doi: 10.1109/TAFFC.2020.3013711 – ident: ref38 doi: 10.1109/TAI.2024.3403953 – ident: ref12 doi: 10.1109/TAFFC.2024.3433613 – ident: ref24 doi: 10.1109/JSEN.2018.2883497 – volume: 29 start-page: 3837 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref44 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – year: 2014 ident: ref55 article-title: Deep domain confusion: Maximizing for domain invariance publication-title: arXiv:1412.3474 – ident: ref31 doi: 10.1109/TAFFC.2018.2885474 – start-page: 1725 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref17 article-title: Simple and deep graph convolutional networks – ident: ref68 doi: 10.1111/j.1469-8986.2009.00958.x – ident: ref45 doi: 10.1109/TAFFC.2019.2922912 – ident: ref46 doi: 10.1109/TAFFC.2019.2937768 – ident: ref41 doi: 10.1109/TPAMI.2020.3029948 – ident: ref9 doi: 10.1109/TCYB.2022.3178370 – ident: ref13 doi: 10.1093/cercor/bhi016 – ident: ref30 doi: 10.1109/tcss.2024.3488201 – ident: ref25 doi: 10.1109/ICMB.2014.29 – ident: ref3 doi: 10.1109/TCYB.2025.3531657 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: ref70 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref22 doi: 10.1016/j.ins.2022.07.121 – ident: ref51 doi: 10.1109/TCYB.2024.3390805 – ident: ref49 doi: 10.1049/cit2.12174 – ident: ref23 doi: 10.4018/978-1-6684-3947-0.ch011 – ident: ref32 doi: 10.1109/JBHI.2022.3210158 – ident: ref58 doi: 10.1109/TNN.2010.2091281 – ident: ref59 doi: 10.5555/2946645.2946704 – ident: ref6 doi: 10.1109/TCYB.2017.2788081 – ident: ref21 doi: 10.3390/e24101322 – ident: ref40 doi: 10.1016/j.inffus.2024.102522 – start-page: 6 volume-title: Proc. 2nd Int. Conf. Learn. Represent. (ICLR) ident: ref34 article-title: Spectral networks and deep locally connected networks on graphs – start-page: 1 volume-title: Proc. ICLR ident: ref35 article-title: Semi-supervised classification with graph convolutional networks – ident: ref2 doi: 10.1109/taffc.2025.3527459 – ident: ref43 doi: 10.1109/TAMD.2015.2431497 – ident: ref8 doi: 10.1109/TAFFC.2018.2817622 – ident: ref63 doi: 10.1109/TCYB.2019.2904052 – ident: ref56 doi: 10.1007/978-3-319-49409-8_35 – ident: ref48 doi: 10.1109/tnnls.2022.3225855 – start-page: 1 volume-title: Proc. ICLR ident: ref39 article-title: Graph attention networks – ident: ref7 doi: 10.1109/TAFFC.2024.3371540 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref14 article-title: DropEdge: Towards deep graph convolutional networks on node classification – ident: ref33 doi: 10.1109/TAFFC.2024.3349770 – ident: ref53 doi: 10.1109/ACCESS.2019.2891579 – ident: ref65 doi: 10.1007/978-3-319-46681-1_21 – ident: ref52 doi: 10.1109/JBHI.2017.2688239 – ident: ref64 doi: 10.1609/aaai.v38i1.27819 – ident: ref66 doi: 10.1109/TCDS.2016.2587290 – ident: ref11 doi: 10.1109/TAFFC.2021.3064940 – ident: ref67 doi: 10.1109/tcds.2024.3470248 – ident: ref27 doi: 10.1109/TCYB.2024.3393020 – ident: ref60 doi: 10.24963/ijcai.2018/216 – ident: ref61 doi: 10.1016/j.bspc.2022.103687 – ident: ref26 doi: 10.1016/j.bica.2018.04.012 – ident: ref54 doi: 10.1007/978-3-030-04221-9_36 – ident: ref1 doi: 10.1109/TCYB.2024.3410844 – ident: ref19 doi: 10.3389/fncom.2019.00087 – ident: ref28 doi: 10.1109/TAFFC.2020.2994159 – ident: ref5 doi: 10.1109/TCYB.2022.3198997 – ident: ref42 doi: 10.1023/A:1018628609742 – ident: ref10 doi: 10.1609/aaai.v34i03.5656 – ident: ref50 doi: 10.1109/JBHI.2024.3416944 |
SSID | ssj0000816898 |
Score | 2.3985908 |
Snippet | The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2038 |
SubjectTerms | Adaptive attention-modulated graph network (AdamGraph) Adaptive systems Algorithms Attention - physiology Brain - physiology Brain modeling Databases, Factual electroencephalogram (EEG) emotion recognition Electroencephalography Electroencephalography - methods Emotion recognition Emotions - classification Emotions - physiology Feature extraction graph connection Humans individual differences Network topology Neural Networks, Computer Signal Processing, Computer-Assisted Stacking subject adaptability Topology Wavelet analysis Wavelet transforms |
Title | AdamGraph: Adaptive Attention-Modulated Graph Network for EEG Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/10943259 https://www.ncbi.nlm.nih.gov/pubmed/40146643 https://www.proquest.com/docview/3182479270 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukxffj_VFBA8qZG2bNN16W5ddRXBB2YX1VJI2uYitaPfir3eStIsKgrc5pG2aSTLfJDPzAZzlaU-GSiqqhelRHmpGZSwZLQIppYg0U4FNTn4Yi7spv5_FsyZZ3eXCaK1d8JnuWtHd5RdVPrdHZbjCU84Qry_DMnpuPllrcaDiGCQc922EAkVYkTS3mPjY1WTwfIPeYBR30cAirLEMMdwWThGc_TBJjmPlb7jpzM5oHcZth320yUt3Xqtu_vmrluO__2gD1hoASvp-xmzCki63YLNZ4h_kvKlDfbENj_1Cvt7agtbXBMU3uzGSfl37AEn6UBWW-ksXxLUhYx9QThAFk-Hwlgw9QRB5akOUqnIHpqPhZHBHGwYGmkeJqGlPGBOqxBK-KRZz0WNozmwRMp6nKDEZIv5jYVgYleQB07EJ0tzwJFUIDRj6v7uwUlal3gciVRzLIkw0SziXqVYilIbZgnKGCyNMBy5bJWRvvtBG5hyUIM2s8jKrvKxRXgd27Fh-a-iHsQOnrd4yXCb27kOWupp_ZLh1RdivKAk6sOcVuni6nQcHf7z1EFbtx32Y4xGs1O9zfYxQpFYnbgp-ASSd1XM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a2wEuwEZh5WPzJA6A5JLEjtNw66Zuha2VQK00TpGd2JeJZGLpZX8979lJBZMqcXsHO3L8bL-f_T5-AO_LfKxjow23yo25jK3gOtWCV5HWWiVWmIiSk-cLNVvJb9fpdZes7nNhrLU--MyOSPS-_Kop1_RUhjs8lwLx-iPYSykbN6RrbZ5UPIeEZ79NUOAILLLOj4kdPy_Pfp7ifTBJR2hiEdgQR4yk0ilKin-MkmdZ2Q44veE5fwaLfsgh3uRmtG7NqLx_UM3xv__pOTztICibhDWzDzu2PoD9bpPfsQ9dJeqPL-D7pNK_Lqik9ReG4i0djWzStiFEks-bisi_bMV8G7YIIeUMcTCbTi_YNFAEsR99kFJTD2B1Pl2ezXjHwcDLJFMtHyvnYpMR5ZsRqVRjgQaNypDJMkdJ6BgRoIjjypmsjIRNXZSXTma5QXAg8Ab8EnbrpraHwLRJU13FmRWZlDq3RsXaCSop56Ryyg3hU6-E4jaU2ij8FSXKC1JeQcorOuUNYUBz-VfDMI1DOOn1VuBGIe-Hrm2zvivw8EpwXEkWDeFVUOimd78OXm_56jE8ni3nV8XV18XlG3hCAwlBj29ht_29tu8QmLTmyC_HP3YL2Ls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AdamGraph%3A+Adaptive+Attention-Modulated+Graph+Network+for+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Philip+Chen%2C+C.+L.&rft.au=Chen%2C+Bianna&rft.au=Zhang%2C+Tong&rft.date=2025-05-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=55&rft.issue=5&rft.spage=2038&rft.epage=2051&rft_id=info:doi/10.1109%2FTCYB.2025.3550191&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2025_3550191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |