AdamGraph: Adaptive Attention-Modulated Graph Network for EEG Emotion Recognition

The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology vari...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 55; no. 5; pp. 2038 - 2051
Main Authors Philip Chen, C. L., Chen, Bianna, Zhang, Tong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2025
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2025.3550191

Cover

Loading…
Abstract The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology variability in capturing the dependencies between channels, which may limit the performance of EEG emotion recognition. To tackle this issue, this article proposes an adaptive attention-modulated graph network (AdamGraph) to enhance the subject adaptability of EEG emotion recognition against connection variability and representation variability. Specifically, an attention-modulated graph connection module is proposed to explicitly capture the individual important relationships among channels adaptively. Through modulating the attention matrix of individual functional connections using spatial connections based on prior knowledge, the attention-modulated weights can be learned to construct individual connections adaptively, thereby mitigating individual differences. Besides, a deep node-graph representation learning module is designed to extract long-range interaction characteristics among channels and alleviate the over-smoothing problem of representations. Furthermore, a graph domain co-regularized learning module is imposed to tackle the individual distribution discrepancies in connection and representations across different domains. Extensive experiments on three public EEG emotion datasets, i.e., SEED, DREAMER, and MPED, validate the superior performance of AdamGraph compared with state-of-the-art methods.
AbstractList The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology variability in capturing the dependencies between channels, which may limit the performance of EEG emotion recognition. To tackle this issue, this article proposes an adaptive attention-modulated graph network (AdamGraph) to enhance the subject adaptability of EEG emotion recognition against connection variability and representation variability. Specifically, an attention-modulated graph connection module is proposed to explicitly capture the individual important relationships among channels adaptively. Through modulating the attention matrix of individual functional connections using spatial connections based on prior knowledge, the attention-modulated weights can be learned to construct individual connections adaptively, thereby mitigating individual differences. Besides, a deep node-graph representation learning module is designed to extract long-range interaction characteristics among channels and alleviate the over-smoothing problem of representations. Furthermore, a graph domain co-regularized learning module is imposed to tackle the individual distribution discrepancies in connection and representations across different domains. Extensive experiments on three public EEG emotion datasets, i.e., SEED, DREAMER, and MPED, validate the superior performance of AdamGraph compared with state-of-the-art methods.
The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology variability in capturing the dependencies between channels, which may limit the performance of EEG emotion recognition. To tackle this issue, this article proposes an adaptive attention-modulated graph network (AdamGraph) to enhance the subject adaptability of EEG emotion recognition against connection variability and representation variability. Specifically, an attention-modulated graph connection module is proposed to explicitly capture the individual important relationships among channels adaptively. Through modulating the attention matrix of individual functional connections using spatial connections based on prior knowledge, the attention-modulated weights can be learned to construct individual connections adaptively, thereby mitigating individual differences. Besides, a deep node-graph representation learning module is designed to extract long-range interaction characteristics among channels and alleviate the over-smoothing problem of representations. Furthermore, a graph domain co-regularized learning module is imposed to tackle the individual distribution discrepancies in connection and representations across different domains. Extensive experiments on three public EEG emotion datasets, i.e., SEED, DREAMER, and MPED, validate the superior performance of AdamGraph compared with state-of-the-art methods.The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology variability in capturing the dependencies between channels, which may limit the performance of EEG emotion recognition. To tackle this issue, this article proposes an adaptive attention-modulated graph network (AdamGraph) to enhance the subject adaptability of EEG emotion recognition against connection variability and representation variability. Specifically, an attention-modulated graph connection module is proposed to explicitly capture the individual important relationships among channels adaptively. Through modulating the attention matrix of individual functional connections using spatial connections based on prior knowledge, the attention-modulated weights can be learned to construct individual connections adaptively, thereby mitigating individual differences. Besides, a deep node-graph representation learning module is designed to extract long-range interaction characteristics among channels and alleviate the over-smoothing problem of representations. Furthermore, a graph domain co-regularized learning module is imposed to tackle the individual distribution discrepancies in connection and representations across different domains. Extensive experiments on three public EEG emotion datasets, i.e., SEED, DREAMER, and MPED, validate the superior performance of AdamGraph compared with state-of-the-art methods.
Author Chen, Bianna
Philip Chen, C. L.
Zhang, Tong
Author_xml – sequence: 1
  givenname: C. L.
  orcidid: 0000-0001-5451-7230
  surname: Philip Chen
  fullname: Philip Chen, C. L.
  organization: Guangdong Provincial Key Laboratory of Computational AI Models and Cognitive Intelligence, the School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Bianna
  orcidid: 0009-0007-5646-3230
  surname: Chen
  fullname: Chen, Bianna
  organization: Guangdong Provincial Key Laboratory of Computational AI Models and Cognitive Intelligence, the School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Tong
  orcidid: 0000-0002-7025-6365
  surname: Zhang
  fullname: Zhang, Tong
  email: tony@scut.edu.cn
  organization: Guangdong Provincial Key Laboratory of Computational AI Models and Cognitive Intelligence, the School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40146643$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1PwzAMhiM0xMbYD0BCqEcuHXHSJg23MZWBNECgceAU9SOBQtuMpgXx70nZmPDFr6zHlvUcokFtaoXQMeApABbnq_nz5ZRgEk5pGGIQsIdGBFjkE8LDwS4zPkQTa9-wq8iNRHSAhgGGgLGAjtDDLE-qRZOsXy88F9dt8am8Wduqui1M7d-avCuTVuXeL-PdqfbLNO-eNo0XxwsvrkzPeY8qMy910ecjtK-T0qrJto_R01W8ml_7y_vFzXy29DPCWetHTGtIOcaUpjQMWESBRIS5xzLhEk0ABKUAuU55hqkKNRaZDrhIMSGUAx2js83ddWM-OmVbWRU2U2WZ1Mp0VlKIiMMJxw493aJdWqlcrpuiSppv-afBAbABssZY2yi9QwDL3rbsbcvettzadjsnm51CKfWPFwEloaA_rp53hA
CODEN ITCEB8
Cites_doi 10.1109/tmm.2025.3535344
10.3389/fnins.2021.778488
10.1109/TNNLS.2023.3264617
10.1609/aaai.v32i1.11604
10.1109/TCDS.2022.3147839
10.1109/tcyb.2025.3542059
10.1109/TPAMI.2021.3132068
10.1109/TCDS.2020.2999337
10.1109/TAFFC.2022.3170428
10.1109/TAFFC.2020.3013711
10.1109/TAI.2024.3403953
10.1109/TAFFC.2024.3433613
10.1109/JSEN.2018.2883497
10.1109/TAFFC.2018.2885474
10.1111/j.1469-8986.2009.00958.x
10.1109/TAFFC.2019.2922912
10.1109/TAFFC.2019.2937768
10.1109/TPAMI.2020.3029948
10.1109/TCYB.2022.3178370
10.1093/cercor/bhi016
10.1109/tcss.2024.3488201
10.1109/ICMB.2014.29
10.1109/TCYB.2025.3531657
10.1016/j.ins.2022.07.121
10.1109/TCYB.2024.3390805
10.1049/cit2.12174
10.4018/978-1-6684-3947-0.ch011
10.1109/JBHI.2022.3210158
10.1109/TNN.2010.2091281
10.5555/2946645.2946704
10.1109/TCYB.2017.2788081
10.3390/e24101322
10.1016/j.inffus.2024.102522
10.1109/taffc.2025.3527459
10.1109/TAMD.2015.2431497
10.1109/TAFFC.2018.2817622
10.1109/TCYB.2019.2904052
10.1007/978-3-319-49409-8_35
10.1109/tnnls.2022.3225855
10.1109/TAFFC.2024.3371540
10.1109/TAFFC.2024.3349770
10.1109/ACCESS.2019.2891579
10.1007/978-3-319-46681-1_21
10.1109/JBHI.2017.2688239
10.1609/aaai.v38i1.27819
10.1109/TCDS.2016.2587290
10.1109/TAFFC.2021.3064940
10.1109/tcds.2024.3470248
10.1109/TCYB.2024.3393020
10.24963/ijcai.2018/216
10.1016/j.bspc.2022.103687
10.1016/j.bica.2018.04.012
10.1007/978-3-030-04221-9_36
10.1109/TCYB.2024.3410844
10.3389/fncom.2019.00087
10.1109/TAFFC.2020.2994159
10.1109/TCYB.2022.3198997
10.1023/A:1018628609742
10.1609/aaai.v34i03.5656
10.1109/JBHI.2024.3416944
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TCYB.2025.3550191
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2051
ExternalDocumentID 40146643
10_1109_TCYB_2025_3550191
10943259
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams
  grantid: 2019ZT08X214
– fundername: National Natural Science Foundation of China
  grantid: 62222603
  funderid: 10.13039/501100001809
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2023B0303030001
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2023B0303030001
  funderid: 10.13039/501100012166
– fundername: STI2030-Major Projects grant from the Ministry of Science and Technology of the People’s Republic of China
  grantid: 2021ZD0200700
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c276t-86ff1b70033b35468312826014c91283a1193311dfb7c03e5f09cf479b0223713
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Wed Jul 02 05:13:42 EDT 2025
Fri Apr 25 03:24:55 EDT 2025
Tue Jul 01 04:58:22 EDT 2025
Wed Aug 27 02:04:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c276t-86ff1b70033b35468312826014c91283a1193311dfb7c03e5f09cf479b0223713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5451-7230
0000-0002-7025-6365
0009-0007-5646-3230
PMID 40146643
PQID 3182479270
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3182479270
ieee_primary_10943259
crossref_primary_10_1109_TCYB_2025_3550191
pubmed_primary_40146643
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref58
ref53
ref52
ref11
ref10
ref54
ref16
Defferrard (ref44); 29
ref19
ref51
ref50
Tzeng (ref55) 2014
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
Kipf (ref35)
ref3
ref6
Estrach (ref34)
ref5
ref40
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
Van der Maaten (ref70) 2008; 9
Rong (ref14)
Veliˇckovi´c (ref39)
Liu (ref18)
ref24
ref68
ref23
ref67
ref26
ref25
Wagh (ref37)
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Chen (ref17)
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref20
  doi: 10.1109/tmm.2025.3535344
– ident: ref57
  doi: 10.3389/fnins.2021.778488
– ident: ref16
  doi: 10.1109/TNNLS.2023.3264617
– ident: ref36
  doi: 10.1609/aaai.v32i1.11604
– start-page: 367
  volume-title: Proc. Mach. Learn. Healthcare
  ident: ref37
  article-title: EEG-GCNN: Augmenting electroencephalogram-based neurological disease diagnosis using a domain-guided graph convolutional neural network
– ident: ref47
  doi: 10.1109/TCDS.2022.3147839
– ident: ref4
  doi: 10.1109/tcyb.2025.3542059
– ident: ref15
  doi: 10.1109/TPAMI.2021.3132068
– ident: ref69
  doi: 10.1109/TCDS.2020.2999337
– ident: ref29
  doi: 10.1109/TAFFC.2022.3170428
– start-page: 21778
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref18
  article-title: Structural re-weighting improves graph domain adaptation
– ident: ref62
  doi: 10.1109/TAFFC.2020.3013711
– ident: ref38
  doi: 10.1109/TAI.2024.3403953
– ident: ref12
  doi: 10.1109/TAFFC.2024.3433613
– ident: ref24
  doi: 10.1109/JSEN.2018.2883497
– volume: 29
  start-page: 3837
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref44
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– year: 2014
  ident: ref55
  article-title: Deep domain confusion: Maximizing for domain invariance
  publication-title: arXiv:1412.3474
– ident: ref31
  doi: 10.1109/TAFFC.2018.2885474
– start-page: 1725
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref17
  article-title: Simple and deep graph convolutional networks
– ident: ref68
  doi: 10.1111/j.1469-8986.2009.00958.x
– ident: ref45
  doi: 10.1109/TAFFC.2019.2922912
– ident: ref46
  doi: 10.1109/TAFFC.2019.2937768
– ident: ref41
  doi: 10.1109/TPAMI.2020.3029948
– ident: ref9
  doi: 10.1109/TCYB.2022.3178370
– ident: ref13
  doi: 10.1093/cercor/bhi016
– ident: ref30
  doi: 10.1109/tcss.2024.3488201
– ident: ref25
  doi: 10.1109/ICMB.2014.29
– ident: ref3
  doi: 10.1109/TCYB.2025.3531657
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref70
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref22
  doi: 10.1016/j.ins.2022.07.121
– ident: ref51
  doi: 10.1109/TCYB.2024.3390805
– ident: ref49
  doi: 10.1049/cit2.12174
– ident: ref23
  doi: 10.4018/978-1-6684-3947-0.ch011
– ident: ref32
  doi: 10.1109/JBHI.2022.3210158
– ident: ref58
  doi: 10.1109/TNN.2010.2091281
– ident: ref59
  doi: 10.5555/2946645.2946704
– ident: ref6
  doi: 10.1109/TCYB.2017.2788081
– ident: ref21
  doi: 10.3390/e24101322
– ident: ref40
  doi: 10.1016/j.inffus.2024.102522
– start-page: 6
  volume-title: Proc. 2nd Int. Conf. Learn. Represent. (ICLR)
  ident: ref34
  article-title: Spectral networks and deep locally connected networks on graphs
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref35
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref2
  doi: 10.1109/taffc.2025.3527459
– ident: ref43
  doi: 10.1109/TAMD.2015.2431497
– ident: ref8
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref63
  doi: 10.1109/TCYB.2019.2904052
– ident: ref56
  doi: 10.1007/978-3-319-49409-8_35
– ident: ref48
  doi: 10.1109/tnnls.2022.3225855
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref39
  article-title: Graph attention networks
– ident: ref7
  doi: 10.1109/TAFFC.2024.3371540
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref14
  article-title: DropEdge: Towards deep graph convolutional networks on node classification
– ident: ref33
  doi: 10.1109/TAFFC.2024.3349770
– ident: ref53
  doi: 10.1109/ACCESS.2019.2891579
– ident: ref65
  doi: 10.1007/978-3-319-46681-1_21
– ident: ref52
  doi: 10.1109/JBHI.2017.2688239
– ident: ref64
  doi: 10.1609/aaai.v38i1.27819
– ident: ref66
  doi: 10.1109/TCDS.2016.2587290
– ident: ref11
  doi: 10.1109/TAFFC.2021.3064940
– ident: ref67
  doi: 10.1109/tcds.2024.3470248
– ident: ref27
  doi: 10.1109/TCYB.2024.3393020
– ident: ref60
  doi: 10.24963/ijcai.2018/216
– ident: ref61
  doi: 10.1016/j.bspc.2022.103687
– ident: ref26
  doi: 10.1016/j.bica.2018.04.012
– ident: ref54
  doi: 10.1007/978-3-030-04221-9_36
– ident: ref1
  doi: 10.1109/TCYB.2024.3410844
– ident: ref19
  doi: 10.3389/fncom.2019.00087
– ident: ref28
  doi: 10.1109/TAFFC.2020.2994159
– ident: ref5
  doi: 10.1109/TCYB.2022.3198997
– ident: ref42
  doi: 10.1023/A:1018628609742
– ident: ref10
  doi: 10.1609/aaai.v34i03.5656
– ident: ref50
  doi: 10.1109/JBHI.2024.3416944
SSID ssj0000816898
Score 2.3985908
Snippet The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2038
SubjectTerms Adaptive attention-modulated graph network (AdamGraph)
Adaptive systems
Algorithms
Attention - physiology
Brain - physiology
Brain modeling
Databases, Factual
electroencephalogram (EEG) emotion recognition
Electroencephalography
Electroencephalography - methods
Emotion recognition
Emotions - classification
Emotions - physiology
Feature extraction
graph connection
Humans
individual differences
Network topology
Neural Networks, Computer
Signal Processing, Computer-Assisted
Stacking
subject adaptability
Topology
Wavelet analysis
Wavelet transforms
Title AdamGraph: Adaptive Attention-Modulated Graph Network for EEG Emotion Recognition
URI https://ieeexplore.ieee.org/document/10943259
https://www.ncbi.nlm.nih.gov/pubmed/40146643
https://www.proquest.com/docview/3182479270
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukxffj_VFBA8qZG2bNN16W5ddRXBB2YX1VJI2uYitaPfir3eStIsKgrc5pG2aSTLfJDPzAZzlaU-GSiqqhelRHmpGZSwZLQIppYg0U4FNTn4Yi7spv5_FsyZZ3eXCaK1d8JnuWtHd5RdVPrdHZbjCU84Qry_DMnpuPllrcaDiGCQc922EAkVYkTS3mPjY1WTwfIPeYBR30cAirLEMMdwWThGc_TBJjmPlb7jpzM5oHcZth320yUt3Xqtu_vmrluO__2gD1hoASvp-xmzCki63YLNZ4h_kvKlDfbENj_1Cvt7agtbXBMU3uzGSfl37AEn6UBWW-ksXxLUhYx9QThAFk-Hwlgw9QRB5akOUqnIHpqPhZHBHGwYGmkeJqGlPGBOqxBK-KRZz0WNozmwRMp6nKDEZIv5jYVgYleQB07EJ0tzwJFUIDRj6v7uwUlal3gciVRzLIkw0SziXqVYilIbZgnKGCyNMBy5bJWRvvtBG5hyUIM2s8jKrvKxRXgd27Fh-a-iHsQOnrd4yXCb27kOWupp_ZLh1RdivKAk6sOcVuni6nQcHf7z1EFbtx32Y4xGs1O9zfYxQpFYnbgp-ASSd1XM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a2wEuwEZh5WPzJA6A5JLEjtNw66Zuha2VQK00TpGd2JeJZGLpZX8979lJBZMqcXsHO3L8bL-f_T5-AO_LfKxjow23yo25jK3gOtWCV5HWWiVWmIiSk-cLNVvJb9fpdZes7nNhrLU--MyOSPS-_Kop1_RUhjs8lwLx-iPYSykbN6RrbZ5UPIeEZ79NUOAILLLOj4kdPy_Pfp7ifTBJR2hiEdgQR4yk0ilKin-MkmdZ2Q44veE5fwaLfsgh3uRmtG7NqLx_UM3xv__pOTztICibhDWzDzu2PoD9bpPfsQ9dJeqPL-D7pNK_Lqik9ReG4i0djWzStiFEks-bisi_bMV8G7YIIeUMcTCbTi_YNFAEsR99kFJTD2B1Pl2ezXjHwcDLJFMtHyvnYpMR5ZsRqVRjgQaNypDJMkdJ6BgRoIjjypmsjIRNXZSXTma5QXAg8Ab8EnbrpraHwLRJU13FmRWZlDq3RsXaCSop56Ryyg3hU6-E4jaU2ij8FSXKC1JeQcorOuUNYUBz-VfDMI1DOOn1VuBGIe-Hrm2zvivw8EpwXEkWDeFVUOimd78OXm_56jE8ni3nV8XV18XlG3hCAwlBj29ht_29tu8QmLTmyC_HP3YL2Ls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AdamGraph%3A+Adaptive+Attention-Modulated+Graph+Network+for+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Philip+Chen%2C+C.+L.&rft.au=Chen%2C+Bianna&rft.au=Zhang%2C+Tong&rft.date=2025-05-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=55&rft.issue=5&rft.spage=2038&rft.epage=2051&rft_id=info:doi/10.1109%2FTCYB.2025.3550191&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2025_3550191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon