AdamGraph: Adaptive Attention-Modulated Graph Network for EEG Emotion Recognition

The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology vari...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 55; no. 5; pp. 2038 - 2051
Main Authors Philip Chen, C. L., Chen, Bianna, Zhang, Tong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The underlying time-variant and subject-specific brain dynamics lead to inconsistent distributions in electroencephalogram (EEG) topology and representations within and between individuals. However, current works primarily align the distributions of EEG representations, overlooking the topology variability in capturing the dependencies between channels, which may limit the performance of EEG emotion recognition. To tackle this issue, this article proposes an adaptive attention-modulated graph network (AdamGraph) to enhance the subject adaptability of EEG emotion recognition against connection variability and representation variability. Specifically, an attention-modulated graph connection module is proposed to explicitly capture the individual important relationships among channels adaptively. Through modulating the attention matrix of individual functional connections using spatial connections based on prior knowledge, the attention-modulated weights can be learned to construct individual connections adaptively, thereby mitigating individual differences. Besides, a deep node-graph representation learning module is designed to extract long-range interaction characteristics among channels and alleviate the over-smoothing problem of representations. Furthermore, a graph domain co-regularized learning module is imposed to tackle the individual distribution discrepancies in connection and representations across different domains. Extensive experiments on three public EEG emotion datasets, i.e., SEED, DREAMER, and MPED, validate the superior performance of AdamGraph compared with state-of-the-art methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2025.3550191