Natural evidence for rapid abiogenic hydrothermal generation of CH4

Although recent hydrothermal experiments imply that abiogenic methane (CH4) generation from hydrothermal reduction of CO2 can occur, evidence from natural systems was still lacking. Based on the chemical and isotopic equilibrium signatures of low-temperature fumarolic gas discharges, we are able to...

Full description

Saved in:
Bibliographic Details
Published inGeochimica et cosmochimica acta Vol. 71; no. 12; pp. 3028 - 3039
Main Authors Fiebig, Jens, Woodland, Alan B., Spangenberg, Jorge, Oschmann, Wolfgang
Format Journal Article
LanguageEnglish
Published 15.06.2007
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although recent hydrothermal experiments imply that abiogenic methane (CH4) generation from hydrothermal reduction of CO2 can occur, evidence from natural systems was still lacking. Based on the chemical and isotopic equilibrium signatures of low-temperature fumarolic gas discharges, we are able to provide hard evidence for its natural occurrence, namely in three subduction-related bi-phase hydrothermal systems of the Mediterranean, whose temperatures range from 260 to 470°C. The attainment of equilibrium and the time spans of recent volcanic dormancy allowed us to calculate minimum rates for chemical and isotopic equilibration. These are significantly higher than those previously reported and might be due to the presence of a saturated water vapor phase in the investigated systems. The fact that nature provides conditions enabling relatively fast production of hydrocarbons from CO2 strongly supports the concerns that were recently raised from laboratory experiments. These address the use of the carbon isotope composition of reduced carbon in Archean sediments as a tracer of early life and the occurrence of CH4 on extraterrestrial planets as a bioindicator. In view of the potential role of abiogenic CH4 as a precursor of life, we also present an estimate of abiogenic hydrothermal CH4 fluxes throughout the Archean. It is not expected that these fluxes exceeded 80Mt/yr during the past 4.0Ga. This, however, would have been enough to facilitate HCN production on the prebiotic Earth.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0016-7037
DOI:10.1016/j.gca.2007.04.010