Implementation of enhanced dynamic wedge in the focus rtp system
The FOCUS RTP system implementation of Varian's enhanced dynamic wedge (EDW) is presented. Calculations of both dose distributions and wedge factors (WFs) are based on segmented treatment tables (STTs). Calculating dose requires a "transmission matrix" derived from an STT to model the...
Saved in:
Published in | Medical dosimetry : official journal of the American Association of Medical Dosimetrists Vol. 25; no. 2; p. 81 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
2000
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The FOCUS RTP system implementation of Varian's enhanced dynamic wedge (EDW) is presented. Calculations of both dose distributions and wedge factors (WFs) are based on segmented treatment tables (STTs). Calculating dose requires a "transmission matrix" derived from an STT to model the modified fluence from the source. The dose calculation is then performed using either the Clarkson or convolution/superposition algorithms. An initial "primary dose/monitor unit (MU) fraction" WF estimate at the weight point of symmetric and asymmetric fields is calculated from the STT as the ratio of MU delivered on the axis of the weight point divided by total MU delivered for the treatment field. In our approach, we go beyond this initial estimate with a "scatter dose" correction. This requires measured 60 degrees WFs for 5 fields. Scatter corrections derived from measured WFs are interpolated for other wedge angles and field sizes in much the same way as arbitrary wedge angle STTs are derived from a "golden STT" using the "ratio of tangents" formalism. Dose comparisons with measured distributions show good agreement to within 3% or 3 mm for 6-MV beams and all EDW angles. Agreement with measurements to within 1% is obtained for WFs in all symmetric and asymmetric fields for 6- and 10-MV beams. For large wedge angles and field sizes, this represents a significant improvement over the 3% to 4% errors often observed using the MU fraction model alone. |
---|---|
ISSN: | 0958-3947 |
DOI: | 10.1016/S0958-3947(00)00033-9 |