Equivalent genetic regulatory networks in different contexts recover contrasting spatial cell patterns that resemble those in Arabidopsis root and leaf epidermis: a dynamic model

In Arabidopsis thaliana, leaf and root epidermis hairs exhibit contrasting spatial arrangements even though the genetic networks regulating their respective cell-fate determination have very similar structures and components. We integrated available experimental data for leaf and root hair patternin...

Full description

Saved in:
Bibliographic Details
Published inThe International journal of developmental biology Vol. 51; no. 2; pp. 139 - 155
Main Authors Benitez, Mariana, Espinosa-Soto, Carlos, Padilla-Longoria, Pablo, Diaz, Jose, Alvarez-Buylla, Elena R.
Format Journal Article
LanguageEnglish
Published Spain 2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In Arabidopsis thaliana, leaf and root epidermis hairs exhibit contrasting spatial arrangements even though the genetic networks regulating their respective cell-fate determination have very similar structures and components. We integrated available experimental data for leaf and root hair patterning in dynamic network models which may be reduced to activator-inhibitor models. This integration yielded expected results for these kinds of dynamic models, including striped and dotted cell patterns which are characteristic of root and leaf epidermis, respectively. However, these formal tools have led us to novel insights on current data and to put forward precise hypotheses which can be addressed experimentally. In particular, despite subtle differences in the root and leaf networks, these have equivalent dynamical behaviors. Our simulations also suggest that only when a biasing signal positively affects an activator in the network, the system recovers striped cellular patterns similar to those of root epidermis. We also postulate that cell shape may affect pattern stability in the root. Our results thus support the idea that in this and other cases, contrasting spatial cell patterns and other evolutionary morphogenetic novelties originate from conserved genetic network modules subject to divergent contextual traits.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0214-6282
DOI:10.1387/ijdb.062183mb