Triple three-dimensional MS/MS spectrum facilitates quantitative ginsenosides-targeted sub-metabolome characterization in notoginseng

Although serving as the workhorse, MS/MS cannot fully satisfy the analytical requirements of quantitative sub-metabolome characterization. Because more information intrinsically correlates to more structural and concentration clues, here, efforts were devoted to comprehensively tracing and decipheri...

Full description

Saved in:
Bibliographic Details
Published inActa pharmaceutica Sinica. B Vol. 14; no. 9; pp. 4045 - 4058
Main Authors Zhang, Ke, Jia, Jinru, Li, Ting, Liu, Wenjing, Tu, Pengfei, Wan, Jian-Bo, Li, Jun, Song, Yuelin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although serving as the workhorse, MS/MS cannot fully satisfy the analytical requirements of quantitative sub-metabolome characterization. Because more information intrinsically correlates to more structural and concentration clues, here, efforts were devoted to comprehensively tracing and deciphering MS/MS behaviors through constructing triple three-dimensional (3×3D)-MS/MS spectrum. Ginsenosides-targeted metabolomics of notoginseng, one of the most famous edible medicinal plants, was employed as a proof-of-concept. Serial authentic ginsenosides were deployed to build the correlations between 3×3D-MS/MS spectra and structure/concentration features. Through assaying ginsenosides with progressive concentrations using QTOF-MS to configure 1st 3D spectrum, the generations of MS1 spectral signals, particularly multi-charged multimer anions, e.g., [2M–2H]2– and [2M+2HCOO]2– ions, relied on both concentration and the amount of sugar chains. By programming progressive collision energies to the front collision cell of Qtrap-MS device to gain 2nd 3D spectrum, optimal collision energy (OCE) corresponding to the glycosidic bond fission was primarily correlated with the masses of precursor and fragment ions and partially governed by the glycosidation site. The quantitative relationships between OCEs and masses of precursor and fragment ions were utilized to build large-scale quantitative program for ginsenosides. After applying progressive exciting energies to the back collision chamber to build 3rd 3D spectrum, the fragment ion and the decomposition product anion exhibited identical dissociation trajectories when they shared the same molecular geometry. After ginsenosides-focused quantitative metabolomics, significant differences occurred for sub-metabolome amongst different parts of notoginseng. The differential ginsenosides were confirmatively identified by applying the correlations between 3×3D-MS/MS spectra and structures. Together, 3×3D-MS/MS spectrum covers all MS/MS behaviors and dramatically facilitates sub-metabolome characterization from both quantitative program development and structural identification. 3×3D-MS/MS spectrum, consisting of full concentration ramp-MS1, FCER-MS2, and FEER-MS3 spectra, dramatically facilitates confirmative structural identification and quantitative sub-metabolome characterization. [Display omitted]
ISSN:2211-3835
DOI:10.1016/j.apsb.2024.04.029