A Modified Multiple-Mixing-Cell Method with Sub-Cells for MMP Determinations

Minimum miscible pressure (MMP) is an essential design parameter of gas flooding for enhanced oil recovery (EOR) applications. Researchers have developed a number of methods for MMP computations, including the analytical methods, the slim-tube simulation method, and the multiple-mixing-cell (MMC) me...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 14; no. 23; p. 7846
Main Authors Xu, Lingfei, Li, Huazhou
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Minimum miscible pressure (MMP) is an essential design parameter of gas flooding for enhanced oil recovery (EOR) applications. Researchers have developed a number of methods for MMP computations, including the analytical methods, the slim-tube simulation method, and the multiple-mixing-cell (MMC) method. Among these methods, the MMC method is widely accepted for its simplicity, robustness, and moderate computational cost An important version of the MMC method is the Jaubert et al. method which has a much lower computational cost than the slim-tube simulation method. However, the original Jaubert et al. method suffers several drawbacks. One notable drawback is that it cannot be applied to the scenario where the oil-gas MMP is lower than the saturation pressure of the crude oil. In this work, we present a modified MMC method that is more versatile and robust than the original version. Our method can handle the scenario where the oil-gas MMP is lower than the saturation pressure of the crude oil. Besides, we propose a modified MMC model that can reduce the computational cost of MMP estimations. This modified model, together with a newly proposed pressure search algorithm, increases the MMP estimation accuracy of the modified method. We demonstrate the good performance of the modified MMC method by testing it in multiple case studies. A good agreement is obtained between the MMPs calculated by the modified method and the tie-line-based ones from the literature.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14237846