FBXL5 interacts with p150 and regulates its ubiquitination

The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. p150 {sup Glued} is the dynactin subunit responsible for binding to dynein and microtubules. The F-box proteins constitute one of the four subunits of ubiquitin protein lig...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 359; no. 1; pp. 34 - 39
Main Authors Zhang, Ning, Liu, Jing, Ding, Xia, Aikhionbare, Felix, Jin, Changjiang, Yao, Xuebiao
Format Journal Article
LanguageEnglish
Published United States 20.07.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. p150 {sup Glued} is the dynactin subunit responsible for binding to dynein and microtubules. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1-cullin-F-box), which governs phosphorylation-dependent ubiquitination and subsequent proteolysis. Our recent study showed that the proteolysis of mitotic kinesin CENP-E is mediated by SCF via a direct Skp1 link [D. Liu, N. Zhang, J. Du, X. Cai, M. Zhu, C. Jin, Z. Dou, C. Feng, Y. Yang, L. Liu, K. Takeyasu, W. Xie, X. Yao, Interaction of Skp1 with CENP-E at the midbody is essential for cytokinesis, Biochem. Biophys. Res. Commun. 345 (2006) 394-402]. Here we show that F-box protein FBXL5 interacts with p150 {sup Glued} and orchestrates its turnover via ubiquitination. FBXL5 binds to p150 {sup Glued} in vitro and in vivo. FBXL5 and p150 {sup Glued} co-localize primarily in the cytoplasm with peri-nuclear enrichment in HeLa cells. Overexpression of FBXL5 promotes poly-ubiquitination of p150 {sup Glued} and protein turnover of p150 {sup Glued} . Our findings provide a potential mechanism by which p150 {sup Glued} protein function is regulated by SCFs.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2007.05.068