Semisupervised Progressive Representation Learning for Deep Multiview Clustering

Multiview clustering has become a research hotspot in recent years due to its excellent capability of heterogeneous data fusion. Although a great deal of related works has appeared one after another, most of them generally overlook the potentials of prior knowledge utilization and progressive sample...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 10; pp. 14341 - 14355
Main Authors Chen, Rui, Tang, Yongqiang, Xie, Yuan, Feng, Wenlong, Zhang, Wensheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multiview clustering has become a research hotspot in recent years due to its excellent capability of heterogeneous data fusion. Although a great deal of related works has appeared one after another, most of them generally overlook the potentials of prior knowledge utilization and progressive sample learning, resulting in unsatisfactory clustering performance in real-world applications. To deal with the aforementioned drawbacks, in this article, we propose a semisupervised progressive representation learning approach for deep multiview clustering (namely, SPDMC). Specifically, to make full use of the discriminative information contained in prior knowledge, we design a flexible and unified regularization, which models the sample pairwise relationship by enforcing the learned view-specific representation of must-link (ML) samples (cannot-link (CL) samples) to be similar (dissimilar) with cosine similarity. Moreover, we introduce the self-paced learning (SPL) paradigm and take good care of two characteristics in terms of both complexity and diversity when progressively learning multiview representations, such that the complementarity across multiple views can be squeezed thoroughly. Through comprehensive experiments on eight widely used image datasets, we prove that the proposed approach can perform better than the state-of-the-art opponents.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2023.3278379