Fabrication and Analysis of Wearable Bioimpedance Analyzers on Paper and Plastic Substrates
Wearable flexible sensors have recently gained much attention as they have the potential to revolutionize the way we monitor activities of the human body. Electronic sensors fabricated on flexible substrates provide compactness, comfort, and flexibility. In this letter, we report a novel design of w...
Saved in:
Published in | IEEE sensors letters Vol. 4; no. 3; pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2475-1472 2475-1472 |
DOI | 10.1109/LSENS.2020.2977232 |
Cover
Loading…
Summary: | Wearable flexible sensors have recently gained much attention as they have the potential to revolutionize the way we monitor activities of the human body. Electronic sensors fabricated on flexible substrates provide compactness, comfort, and flexibility. In this letter, we report a novel design of wearable and mechanically flexible bioimpedance analyzers. We fabricate the analyzers by printing electronic circuits on paper and plastic substrates. The sensor module is lightweight, comfortable, and can be worn on the wrist to measure the body impedance continuously. Failure analysis is performed by bending the flexible sensor modules with the circuit breaking angles at 53° ± 4° and 42° ± 3° for paper and plastic substrates, respectively. The performance of the flexible sensors is compared with an analyzer developed on a conventional rigid printed circuit board. In an active mode, the paper-based sensor consumes more power (83.3 mW) than the plastic (65.7 mW) and rigid (53.42 mW) sensors. The flexible sensor modules are integrated with dry electrodes, while gel-based Ag/AgCl electrodes are attached to the rigid sensor module for bioimpedance measurements. The experiments are conducted on 12 healthy human subjects by using all three sensor modules. The integrated dry electrodes of the flexible sensor modules provide lower skin-electrode contact impedance along with enhanced convenience, durability, and reusability, as compared to commercial Ag/AgCl electrodes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2475-1472 2475-1472 |
DOI: | 10.1109/LSENS.2020.2977232 |