Proof of Concept and Validation of Single-Camera AI-Assisted Live Thumb Motion Capture

Motion analysis can be useful for multiplanar analysis of hand kinematics. The carpometacarpal (CMC) joint has been traditionally difficult to capture with surface-based motion analysis but is the most commonly arthritic joint of the hand and is of particular clinical interest. Traditional 3D motion...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 15; p. 4633
Main Authors Dinh, Huy G., Zhou, Joanne Y., Benmira, Adam, Kenney, Deborah E., Ladd, Amy L.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.07.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Motion analysis can be useful for multiplanar analysis of hand kinematics. The carpometacarpal (CMC) joint has been traditionally difficult to capture with surface-based motion analysis but is the most commonly arthritic joint of the hand and is of particular clinical interest. Traditional 3D motion capture of the CMC joint using multiple cameras and reflective markers and manual goniometer measurement has been challenging to integrate into clinical workflow. We therefore propose a markerless single-camera artificial intelligence (AI)-assisted motion capture method to provide real-time estimation of clinically relevant parameters. Our study enrolled five healthy subjects, two male and three female. Fourteen clinical parameters were extracted from thumb interphalangeal (IP), metacarpal phalangeal (MP), and CMC joint motions using manual goniometry and live motion capture with the Google AI MediaPipe Hands landmarker model. Motion capture measurements were assessed for accuracy, precision, and correlation with manual goniometry. Motion capture demonstrated sufficient accuracy in 11 and precision in all 14 parameters, with mean error of −2.13 ± 2.81° (95% confidence interval [CI]: −5.31, 1.05). Strong agreement was observed between both modalities across all subjects, with a combined Pearson correlation coefficient of 0.97 (p < 0.001) and an intraclass correlation coefficient of 0.97 (p < 0.001). The results suggest AI-assisted live motion capture can be an accurate and practical thumb assessment tool, particularly in virtual patient encounters, for enhanced range of motion (ROM) analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25154633