Simultaneous quantification of volatile fatty acids and nonvolatile organic acids in Hevea brasiliensis latex
The current method used in latex industries to determine the volatile fatty acids contents of Hevea brasiliensis latex is steam distillation. However, the accuracy of the method has been debated for some time. We assessed the accuracy of the method and developed a new, more reliable high‐performance...
Saved in:
Published in | Journal of separation science Vol. 45; no. 18; pp. 3491 - 3500 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The current method used in latex industries to determine the volatile fatty acids contents of Hevea brasiliensis latex is steam distillation. However, the accuracy of the method has been debated for some time. We assessed the accuracy of the method and developed a new, more reliable high‐performance liquid chromatographic method of determining acids in latex. The volatile fatty acids (formic, acetic, propionic, butyric, and valeric acids) and nonvolatile organic acids (oxalic, malic, lactic, citric, and succinic acids) in latex are directly determined simultaneously for the first time with high sensitivity and without losses during sample preparation. To avoid errors from derivatization, an acid‐resistant Prevail HPLC column and a gradient mobile phase of 25 mM potassium dihydrogen phosphate (pH 2.5) and acetonitrile were employed. Under optimum conditions, the calibrations of both types of acids demonstrated satisfactory correlation coefficients of ≥0.990, with limits of detection ranging from 0.02 to 395 mM. The developed method demonstrated the profiles of acids in field and concentrated latex of the same batch. Moreover, the evolution of the profiles of all studied acids in both types of latex during a 3‐month period was also revealed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1615-9306 1615-9314 |
DOI: | 10.1002/jssc.202200061 |