Image-and-Label Conditioning Latent Diffusion Model: Synthesizing A \beta-PET From MRI for Detecting Amyloid Status

Deposition of <inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-amyloid (A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>), which is generally observed by A<inline-formula&g...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 29; no. 2; pp. 1221 - 1231
Main Authors Ou, Zaixin, Pan, Yongsheng, Xie, Fang, Guo, Qihao, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deposition of <inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-amyloid (A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>), which is generally observed by A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET, is an important biomarker to evaluate subjects with early-onset dementia. However, acquisition of A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET usually suffers from high expense and radiation hazards, making A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET not commonly used as MRI. As A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET scans are only used to determine whether A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula> deposition is positive or not, it is highly valuable to capture the underlying relationship between A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula> deposition and other neuroimages (i.e., MRI) and detect amyloid status based on other neuroimages to reduce necessity of acquiring A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET. To this end, we propose an image-and-label conditioning latent diffusion model (IL-CLDM) to synthesize A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET scans from MRI scans by enhancing critical shared information to finally achieve MRI-based A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula> classification. Specifically, two conditioning modules are introduced to enable IL-CLDM to implicitly learn joint image synthesis and diagnosis: 1) an image conditioning module, to extract meaningful features from source MRI scans to provide structural information, and 2) a label conditioning module, to guide the alignment of generated scans to the diagnosed label. Experiments on a clinical dataset of 510 subjects demonstrate that our proposed IL-CLDM achieves image quality superior to five widely used models, and our synthesized A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET scans (by IL-CLDM) can significantly help classification of A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula> as positive or negative.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2024.3492020