Image-and-Label Conditioning Latent Diffusion Model: Synthesizing A \beta-PET From MRI for Detecting Amyloid Status
Deposition of <inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-amyloid (A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>), which is generally observed by A<inline-formula&g...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 29; no. 2; pp. 1221 - 1231 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deposition of <inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-amyloid (A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>), which is generally observed by A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET, is an important biomarker to evaluate subjects with early-onset dementia. However, acquisition of A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET usually suffers from high expense and radiation hazards, making A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET not commonly used as MRI. As A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET scans are only used to determine whether A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula> deposition is positive or not, it is highly valuable to capture the underlying relationship between A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula> deposition and other neuroimages (i.e., MRI) and detect amyloid status based on other neuroimages to reduce necessity of acquiring A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET. To this end, we propose an image-and-label conditioning latent diffusion model (IL-CLDM) to synthesize A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET scans from MRI scans by enhancing critical shared information to finally achieve MRI-based A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula> classification. Specifically, two conditioning modules are introduced to enable IL-CLDM to implicitly learn joint image synthesis and diagnosis: 1) an image conditioning module, to extract meaningful features from source MRI scans to provide structural information, and 2) a label conditioning module, to guide the alignment of generated scans to the diagnosed label. Experiments on a clinical dataset of 510 subjects demonstrate that our proposed IL-CLDM achieves image quality superior to five widely used models, and our synthesized A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula>-PET scans (by IL-CLDM) can significantly help classification of A<inline-formula><tex-math notation="LaTeX">\beta</tex-math></inline-formula> as positive or negative. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2168-2194 2168-2208 2168-2208 |
DOI: | 10.1109/JBHI.2024.3492020 |