A Novel Approach: Tokenization Framework based on Sentence Structure in Indonesian Language

This study proposes a new approach in the sentence tokenization process. Sentence tokenization, which is known so far, is the process of breaking sentences based on spaces as separators. Space-based sentence tokenization only generates single word tokens. In sentences consisting of five words, token...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 14; no. 2
Main Authors Petrus, Johannes, -, Ermatita, -, Sukemi, -, Erwin
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study proposes a new approach in the sentence tokenization process. Sentence tokenization, which is known so far, is the process of breaking sentences based on spaces as separators. Space-based sentence tokenization only generates single word tokens. In sentences consisting of five words, tokenization will produce five tokens, one word each. Each word is a token. This process ignores the loss of the original meaning of the separated words. Our proposed tokenization framework can generate one-word tokens and multi-word tokens at the same time. The process is carried out by extracting the sentence structure to obtain sentence elements. Each sentence element is a token. There are five sentence elements that is Subject, Predicate, Object, Complement and Adverbs. We extract sentence structures using deep learning methods, where models are built by training the datasets that have been prepared before. The training results are quite good with an F1 score of 0.7 and it is still possible to improve. Sentence similarity is the topic for measuring the performance of one-word tokens compared to multi-word tokens. In this case the multiword token has better accuracy. This framework was created using the Indonesian language but can also use other languages with dataset adjustments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2023.0140264