Metallic open-cell foams--a promising approach to fabricating good medical implants

The aim of this paper is to report on the characterization of the influences of foam homogeneity and the cell strut material on the mechanical behaviour and the fracture mode of metallic foams that are promising candidates for new perfectly tailored medical implants. For two open-cell foams with ide...

Full description

Saved in:
Bibliographic Details
Published inTechnology and health care Vol. 14; no. 4-5; pp. 201 - 208
Main Authors Ohrndorf, A, Krupp, U, Christ, H-J
Format Journal Article
LanguageEnglish
Published Netherlands 2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of this paper is to report on the characterization of the influences of foam homogeneity and the cell strut material on the mechanical behaviour and the fracture mode of metallic foams that are promising candidates for new perfectly tailored medical implants. For two open-cell foams with identical cell geometries produced in the same precision-casting process but using different cell strut materials, the stress-strain behaviour and the evolution of damage until fracture is compared. To account for effects arising from a change in the geometry of the cell structure and the resulting homogeneity of the foam, the main characteristics of fracture for the group of closed-cell foams were included in this study. Monotonic tests carried out in compression revealed that foam homogeneity is the major factor with respect to the formation of deformation bands prior to cell collapse in metallic foams. The influence of the cell strut ductility is particularly pronounced in monotonic tension where the fracture mode changes from extremely brittle fracture to strongly plastically deformed cells, with substantial fracture elongation. In tension-tension fatigue as well as under symmetric push-pull loading conditions, damage is governed by a combination of cyclic creep and fatigue crack propagation through the specimen. From a mechanistic point of view no fundamental differences between the three foams tested were detected for these loading conditions. However, in compression-compression fatigue the same dependencies in terms of homogeneity and ductility influence the mechanisms of strain evolution that are active in monotonic compression.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ObjectType-Feature-1
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0928-7329
1878-7401
DOI:10.3233/thc-2006-144-502