Zero crossing detection algorithm based on an MLP neural network for differential confocal microscopy
Differential confocal microscopy is widely used because of its ultra-high axial resolution. The surface gradient results in light loss, which decreases the slope of the differential response signal at zero crossing. At this point, when the signal-to-noise ratio is fixed, the traditional linear fitti...
Saved in:
Published in | Journal of physics. Conference series Vol. 2704; no. 1; pp. 12019 - 12026 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-6588 1742-6596 |
DOI | 10.1088/1742-6596/2704/1/012019 |
Cover
Loading…
Summary: | Differential confocal microscopy is widely used because of its ultra-high axial resolution. The surface gradient results in light loss, which decreases the slope of the differential response signal at zero crossing. At this point, when the signal-to-noise ratio is fixed, the traditional linear fitting method to determine the position of zero crossing is subject to significant error influence. To solve these issues, this paper proposes a zero crossing detection algorithm based on a multilayer perceptron (MLP) neural network. Experimental results reveal that the proposed algorithm is more robust and capable of better zero crossing extraction. When numerical aperture (NA)=0.4, the average error is 16.9 nm, which is 55.4 % higher than that of the traditional linear fitting algorithm. The proposed algorithm has a high potential for use with the differential confocal sensor to measure unknown steep surfaces. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2704/1/012019 |