Metformin induces apoptosis via uterus mitochondrial permeability transition pore opening and protects against estradiol benzoate-induced uterine defect and associated pathophysiological disorder in female Wistar rats

Background Some antitumor or anticancer agents have been shown to execute cell death by induction of mitochondrial permeability transition (mPT) pore opening in order to elicit their chemotherapeutic effect. Therefore, this study investigated the effect of metformin on cell death via rat uterus mPT...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the National Research Centre Vol. 45; no. 1; pp. 1 - 9
Main Authors Olowofolahan, Adeola Oluwakemi, Paulinus, Obinna Matthew, Dare, Heritage Mojisola, Olorunsogo, Olufunso Olabode
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 06.06.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Some antitumor or anticancer agents have been shown to execute cell death by induction of mitochondrial permeability transition (mPT) pore opening in order to elicit their chemotherapeutic effect. Therefore, this study investigated the effect of metformin on cell death via rat uterus mPT pore and estradiol benzoate-induced uterine defect and associated pathophysiological disorder in female rat. Mitochondria were isolated using differential centrifugation. The mPT pore opening, cytochrome c release and mitochondrial ATPase activity were determined spectrophotometrically. Caspases 9 and 3 activities, MDA and estradiol levels and SOD, GSH activities, were determined using ELISA technique. Histological and histochemical assessments of the uterine section were carried out using standard methods. Results Metformin at concentrations 10–90 μg/mL, showed no significant effect on mPT pore opening, mATPase activity and release of cytochrome c. However, oral administration of metformin caused mPT pore opening, enhancement of mATPase activity and activation of caspases 9 and 3 significantly at 300 and 400 mg/kg. Metformin protected against estradiol benzoate (EB)-induced uterine defect and other associated pathophysiological disorder. It also improved the antioxidant defense system. The histological evaluation revealed the protective effect of metformin on the cellular architecture of the uterus while the histochemical examination showed severe hyperplasia in the uterine section of EB-treated rats, remarkably reversed by metformin co-treatment. Conclusion This study suggests that metformin at high doses induces apoptosis via rat uterus mPT pore opening and protects against EB-induced uterine defect (hyperplasia) and associated pathophysiological disorder.
ISSN:2522-8307
2522-8307
DOI:10.1186/s42269-021-00562-6