Personalized medicine in the evaluation of Müllerian anomalies: the role of three-dimensional printing technology
To present the comprehensive methodology for generating personalized three-dimensional (3D) printed uterine models from 3D ultrasound (US) volumes in individuals diagnosed with Müllerian anomalies and discuss potential applications in the field of reproductive endocrinology and infertility. Pilot st...
Saved in:
Published in | F&S Reports (Online) Vol. 5; no. 3; pp. 279 - 284 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To present the comprehensive methodology for generating personalized three-dimensional (3D) printed uterine models from 3D ultrasound (US) volumes in individuals diagnosed with Müllerian anomalies and discuss potential applications in the field of reproductive endocrinology and infertility.
Pilot study.
Single large university-affiliated teaching hospital.
Patients with the presence of a Müllerian anomaly between the ages of 18 and 45 years attending the maternal-fetal medicine as well as reproductive endocrinology and infertility outpatient offices from 2018 to 2023 were included in the study.
Subjects underwent 3D US transvaginal scanning for the collection of data. The 3D US volumes were acquired, edited, and exported from a US cart Voluson E10 system (GE Healthcare, Chicago, IL). High-definition virtual models were created and modified, making them suitable for printing using Materialise 3-Matic Medical (Materialise NV, Leuven, Belgium). The models were printed on a J5 MediJet 3D printer (Stratasys, Rehovot, Israel). Colors were set to mimic a realistic appearance, and shore values were set before printing.
Successful creation and utilization of personalized 3D-printed uterine models for individuals with Müllerian anomalies.
Three-dimensional models were created for a uterus without anomalies, 2 variations of a partial septum, a unicornuate, and a didelphys uterus. Models were used as a tactile and customized tool for patient education, counseling, and medical student and resident teaching. This technique illustrates that the creation of personalized 3D-printed uterine models for utilization in the fields of reproductive endocrinology and infertility is feasible.
We propose a novel use of individualized 3D-printed uterine models in the evaluation of individuals with Müllerian anomalies. These models may play a complementary role to standard imaging options in the assessment of these anomalies, with a special potential for application in highly complex or yet-to-be-determined types of anomalies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2666-3341 2666-3341 |
DOI: | 10.1016/j.xfre.2024.05.003 |