Conformational changes induced by K949A mutation in the CRISPR-Cas12a complex drives an effective target-binding mechanism
The CRISPR/Cas system is a potential tool for genome editing, yet it faces challenges due to off-target activity caused by mismatches at specific positions. However, Off-target activity can be minimized by optimal design of guide RNA (gRNA) but there remains a possibility of unintended cleavage, hig...
Saved in:
Published in | Current research in structural biology Vol. 10; p. 100173 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2665-928X 2665-928X |
DOI | 10.1016/j.crstbi.2025.100173 |
Cover
Loading…
Summary: | The CRISPR/Cas system is a potential tool for genome editing, yet it faces challenges due to off-target activity caused by mismatches at specific positions. However, Off-target activity can be minimized by optimal design of guide RNA (gRNA) but there remains a possibility of unintended cleavage, highlighting the role of the Cas nuclease in off-target recognition and binding the target site. This study focuses on comparing the conformational dynamics and stability of Wildtype, RR, RVR, RRm and RVRm variants of AsCas12a with gRNA-DNA bound complexes. It was found that the cross-correlation coefficient between His1167 of the NUC domain and Thr384 of the REC II domain significantly increased after the K949A mutation compared to other variants. The extensive spread of principal components also revealed flexibility in both Cas nuclease and gRNA-DNA hybrid of RVR variant and wildtype AsCas12a whereas the confined clusters in PCA plot suggests increased stability in both the variants after mutation. This study shows the role of K949A mutation in improving stability of PAM variants and predicted critical residues such as His1167, Thr384 and Ser959, in inducing stability in mutants of PAM variants.
[Display omitted] |
---|---|
ISSN: | 2665-928X 2665-928X |
DOI: | 10.1016/j.crstbi.2025.100173 |