Monoidal categorification and quantum affine algebras
We introduce and investigate new invariants of pairs of modules $M$ and $N$ over quantum affine algebras $U_{q}^{\prime }(\mathfrak{g})$ by analyzing their associated $R$ -matrices. Using these new invariants, we provide a criterion for a monoidal category of finite-dimensional integrable $U_{q}^{\p...
Saved in:
Published in | Compositio mathematica Vol. 156; no. 5; pp. 1039 - 1077 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Cambridge University Press
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-437X 1570-5846 |
DOI | 10.1112/S0010437X20007137 |
Cover
Loading…
Summary: | We introduce and investigate new invariants of pairs of modules
$M$
and
$N$
over quantum affine algebras
$U_{q}^{\prime }(\mathfrak{g})$
by analyzing their associated
$R$
-matrices. Using these new invariants, we provide a criterion for a monoidal category of finite-dimensional integrable
$U_{q}^{\prime }(\mathfrak{g})$
-modules to become a monoidal categorification of a cluster algebra. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X20007137 |