Anodic behavior of gold in acid thiourea solutions: A cyclic voltammetry and quartz microgravimetry study

It is shown that at potentials E < 0.5 V (NHE) gold undergoes practically no dissolution in thiourea solutions containing no catalytically active species. The dissolution at a perceptible rate (> 100 μA cm−2) starts at E ≥ 0.65 V, with the primary process being the oxidation of thiourea, which...

Full description

Saved in:
Bibliographic Details
Published inRussian journal of electrochemistry Vol. 42; no. 3; pp. 239 - 244
Main Authors Shevtsova, O. N., Bek, R. Yu, Zelinskii, A. G., Vais, A. A.
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.03.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It is shown that at potentials E < 0.5 V (NHE) gold undergoes practically no dissolution in thiourea solutions containing no catalytically active species. The dissolution at a perceptible rate (> 100 μA cm−2) starts at E ≥ 0.65 V, with the primary process being the oxidation of thiourea, which gives rise a current peak at E ≃ 1.0 V. The thiourea oxidation at E ≥ 1.1 produces the appearance of catalytically active species, which drastically accelerate the gold dissolution process in the potential region extending from a steady-state value to 0.6 V, where the current efficiency for gold approaches 100% and a peak emerges at E ≃ 0.55 V. The peak’s height is commensurate with the value of the limiting diffusion current associated with the ligand supply. The species in question make no discernible impact on the thiourea oxidation process. Formamidine disulfide, which forms during the anodic oxidation of thiourea or which is added in solution on purpose, exerts no noticeable catalytic influence on the anodic gold dissolution. The catalytically active species is presumably the S2− ion, product of decomposition and deep oxidation of thiourea and formamidine disulfide. Indeed, adding sulfide ions in solution has a strong catalytic effect on the gold dissolution, whose character is identical to that of the effect exerted by products of anodic oxidation of thiourea at E ≥ 1.1 V μA cm−2.
ISSN:1023-1935
1608-3342
DOI:10.1134/S1023193506030050