Alu Retrotransposition Event in SPAST Gene as a Novel Cause of Hereditary Spastic Paraplegia

To diagnose the molecular cause of hereditary spastic paraplegia (HSP) observed in a four-generation family with autosomal dominant inheritance. Multiplex ligation-dependent probe amplification (MLPA), whole-exome sequencing (WES), and RNA sequencing (RNA-seq) of peripheral blood leukocytes were per...

Full description

Saved in:
Bibliographic Details
Published inMovement disorders Vol. 38; no. 9; pp. 1750 - 1755
Main Authors Chen, Yi‐Jun, Wang, Meng‐Wen, Qiu, Yu‐Sen, Yuan, Ru‐Ying, Wang, Ning, Lin, Xiang, Chen, Wan‐Jin
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To diagnose the molecular cause of hereditary spastic paraplegia (HSP) observed in a four-generation family with autosomal dominant inheritance. Multiplex ligation-dependent probe amplification (MLPA), whole-exome sequencing (WES), and RNA sequencing (RNA-seq) of peripheral blood leukocytes were performed. Reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing were used to characterize target regions of SPAST. A 121-bp AluYb9 insertion with a 30-bp poly-A tail flanked by 15-bp direct repeats on both sides was identified in the edge of intron 16 in SPAST that segregated with the disease phenotype. We identified an intronic AluYb9 insertion inducing splicing alteration in SPAST causing pure HSP phenotype that was not detected by routine WES analysis. Our findings suggest RNA-seq is a recommended implementation for undiagnosed cases by first-line diagnostic approaches. © 2023 International Parkinson and Movement Disorder Society.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0885-3185
1531-8257
1531-8257
DOI:10.1002/mds.29522