Possibility of transporting material from Ceres to NEO region via 8:3 MMR with Jupiter

ABSTRACT In this work, we investigate the possibility of transporting material to the NEO region via the 8:3 MMR with Jupiter, potentially even material released from the dwarf planet Ceres. By applying the FLI map method to the 8:3 MMR region in the orbital plane of Ceres, we were able to distingui...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 509; no. 3; pp. 3842 - 3851
Main Authors Kováčová, M, Kornoš, L, Matlovič, P
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT In this work, we investigate the possibility of transporting material to the NEO region via the 8:3 MMR with Jupiter, potentially even material released from the dwarf planet Ceres. By applying the FLI map method to the 8:3 MMR region in the orbital plane of Ceres, we were able to distinguish between stable and unstable orbits. Subsequently, based on the FLI maps (for mean anomaly M = 60° and also M = 30°), 500 of the most stable and 500 of the most unstable particles were integrated for $15\, \mathrm{Myr}$ for each map. Long-term integration in the case of M = 60° showed that most of the stable particles evolved, in general, in uneventful ways with only 0.8 per cent of particles reaching the limit of q ≤ 1.3 au . However, in the case of M = 30°, a stable evolution was not confirmed. Over 40 per cent of particles reached orbits with q ≤ 1.3 au and numerous particles were ejected to hyperbolic orbits or orbits with a > 100 au. The results for stable particles indicate that short-term FLI maps are more suitable for finding chaotic orbits, than for detecting the stable ones. A rough estimate shows that it is possible for material released from Ceres to get to the region of 8:3 MMR with Jupiter. A long-term integration of unstable particles in both cases showed that transportation of material via 8:3 MMR close to the Earth is possible.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab3268