An Aluminophosphate Molecular Sieve with 36 Crystallographically Distinct Tetrahedral Sites

The structure of the new medium‐pore aluminophosphate molecular sieve PST‐6 is determined by the combined use of rotation electron diffraction tomography, synchrotron X‐ray powder diffraction, and computer modeling. PST‐6 was prepared by calcination of another new aluminophosphate material with an u...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 126; no. 29; pp. 7610 - 7613
Main Authors Lee, Jun Kyu, Turrina, Alessandro, Zhu, Liangkui, Seo, Seungwan, Zhang, Daliang, Cox, Paul A., Wright, Paul A., Qiu, Shilun, Hong, Suk Bong
Format Journal Article
LanguageEnglish
German
Published Weinheim WILEY-VCH Verlag 14.07.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The structure of the new medium‐pore aluminophosphate molecular sieve PST‐6 is determined by the combined use of rotation electron diffraction tomography, synchrotron X‐ray powder diffraction, and computer modeling. PST‐6 was prepared by calcination of another new aluminophosphate material with an unknown structure synthesized using diethylamine as a structure‐directing agent, which is thought to contain bridging hydroxy groups. PST‐6 has 36 crystallographically distinct tetrahedral sites in the asymmetric unit and is thus crystallographically the most complex zeolitic structure ever solved. Strukturaufklärung: Das Aluminiumphosphat‐Molekularsieb PST‐6 (siehe Bild) enthält mittelgroße Poren und 36 kristallographisch unterschiedliche Tetraederzentren. Diese komplexeste bekannte Zeolithstruktur wurde durch Röntgenstreuung, Elektronenkristallographie und Computermodellierung bestimmt.
Bibliography:National Natural Science Foundation of China - No. 91022030; No. 21261130584; No. 21201076; No. 11227403
istex:4DA94CD4EE0943212493859521CA939E08DD0F4D
ark:/67375/WNG-59NK16Q6-L
This work was supported by the NCRI (grant number 2012R1A3A-2048833) and BK 21-plus programs through the National Research Foundation of Korea, POSCO, and the National Natural Science Foundation of China (grant numbers 91022030, 21261130584, 21201076, and 11227403). A.T. acknowledges Johnson Matthey (UK), for financial support. We thank PAL, Korea, and Diamond Light Source (DLS) (UK), for synchrotron diffraction beam time, and Prof. C. C. Tang (DLS) for assistance.
NCRI - No. 2012R1A3A-2048833
National Research Foundation of Korea
POSCO
Johnson Matthey (UK)
ArticleID:ANGE201402495
This work was supported by the NCRI (grant number 2012R1A3A‐2048833) and BK 21‐plus programs through the National Research Foundation of Korea, POSCO, and the National Natural Science Foundation of China (grant numbers 91022030, 21261130584, 21201076, and 11227403). A.T. acknowledges Johnson Matthey (UK), for financial support. We thank PAL, Korea, and Diamond Light Source (DLS) (UK), for synchrotron diffraction beam time, and Prof. C. C. Tang (DLS) for assistance.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201402495