Marine Biogenic Volatile Organic Compounds: Production, Emission, Atmospheric Transformation, and Climate Effects

Purpose of Review Biogenic volatile organic compounds (BVOCs) play a significant role in the global carbon cycle and climate change. While significant advancements have been made in terrestrial BVOCs research, critical gaps persist in understanding marine BVOCs, particularly their emission, multipha...

Full description

Saved in:
Bibliographic Details
Published inCurrent pollution reports Vol. 11; no. 1; p. 37
Main Authors Wang, Jinyan, Li, Jianlong, Tsona Tchinda, Narcisse, Du, Lin
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 06.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose of Review Biogenic volatile organic compounds (BVOCs) play a significant role in the global carbon cycle and climate change. While significant advancements have been made in terrestrial BVOCs research, critical gaps persist in understanding marine BVOCs, particularly their emission, multiphase oxidation pathways, and climate feedback mechanisms. Recent Findings Current atmospheric models underestimate the flux of marine VOCs. Recent studies have revealed isomerization pathways and heterogeneous reaction mechanisms, thereby revising the traditional theory dominated solely by gas-phase oxidation in atmospheric transformation of BVOCs. This advancement enables more accurate prediction of oxidation product distributions. These products can drive new particle formation at the tropopause, thereby influencing radiation balance and regulating climate through resultant feedback mechanisms. Summary This review systematically elaborates the sources and sinks of marine BVOCs, their atmospheric transformation mechanisms, and climate feedback, highlighting the critical role of marine biota in global climate regulation. The production and emission of marine BVOCs exhibit significant spatiotemporal heterogeneity, primarily regulated by marine internal processes including biological activities and chemical reactions. Upon entering the atmosphere via sea-air exchange, marine BVOCs undergo complex atmospheric oxidation processes to form aerosols (e.g., sulfur-containing aerosols, brown carbon) and reactive halogen species, thereby influencing the radiation balance and atmospheric oxidation capacity while exerting crucial feedback on global climate. This provides an overarching perspective for a more comprehensive understanding of the role of marine ecosystems in global climate regulation. Graphical Abstract
AbstractList Purpose of ReviewBiogenic volatile organic compounds (BVOCs) play a significant role in the global carbon cycle and climate change. While significant advancements have been made in terrestrial BVOCs research, critical gaps persist in understanding marine BVOCs, particularly their emission, multiphase oxidation pathways, and climate feedback mechanisms.Recent FindingsCurrent atmospheric models underestimate the flux of marine VOCs. Recent studies have revealed isomerization pathways and heterogeneous reaction mechanisms, thereby revising the traditional theory dominated solely by gas-phase oxidation in atmospheric transformation of BVOCs. This advancement enables more accurate prediction of oxidation product distributions. These products can drive new particle formation at the tropopause, thereby influencing radiation balance and regulating climate through resultant feedback mechanisms.SummaryThis review systematically elaborates the sources and sinks of marine BVOCs, their atmospheric transformation mechanisms, and climate feedback, highlighting the critical role of marine biota in global climate regulation. The production and emission of marine BVOCs exhibit significant spatiotemporal heterogeneity, primarily regulated by marine internal processes including biological activities and chemical reactions. Upon entering the atmosphere via sea-air exchange, marine BVOCs undergo complex atmospheric oxidation processes to form aerosols (e.g., sulfur-containing aerosols, brown carbon) and reactive halogen species, thereby influencing the radiation balance and atmospheric oxidation capacity while exerting crucial feedback on global climate. This provides an overarching perspective for a more comprehensive understanding of the role of marine ecosystems in global climate regulation.
Purpose of Review Biogenic volatile organic compounds (BVOCs) play a significant role in the global carbon cycle and climate change. While significant advancements have been made in terrestrial BVOCs research, critical gaps persist in understanding marine BVOCs, particularly their emission, multiphase oxidation pathways, and climate feedback mechanisms. Recent Findings Current atmospheric models underestimate the flux of marine VOCs. Recent studies have revealed isomerization pathways and heterogeneous reaction mechanisms, thereby revising the traditional theory dominated solely by gas-phase oxidation in atmospheric transformation of BVOCs. This advancement enables more accurate prediction of oxidation product distributions. These products can drive new particle formation at the tropopause, thereby influencing radiation balance and regulating climate through resultant feedback mechanisms. Summary This review systematically elaborates the sources and sinks of marine BVOCs, their atmospheric transformation mechanisms, and climate feedback, highlighting the critical role of marine biota in global climate regulation. The production and emission of marine BVOCs exhibit significant spatiotemporal heterogeneity, primarily regulated by marine internal processes including biological activities and chemical reactions. Upon entering the atmosphere via sea-air exchange, marine BVOCs undergo complex atmospheric oxidation processes to form aerosols (e.g., sulfur-containing aerosols, brown carbon) and reactive halogen species, thereby influencing the radiation balance and atmospheric oxidation capacity while exerting crucial feedback on global climate. This provides an overarching perspective for a more comprehensive understanding of the role of marine ecosystems in global climate regulation. Graphical Abstract
ArticleNumber 37
Author Li, Jianlong
Wang, Jinyan
Du, Lin
Tsona Tchinda, Narcisse
Author_xml – sequence: 1
  givenname: Jinyan
  surname: Wang
  fullname: Wang, Jinyan
  organization: Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University
– sequence: 2
  givenname: Jianlong
  surname: Li
  fullname: Li, Jianlong
  organization: Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University
– sequence: 3
  givenname: Narcisse
  surname: Tsona Tchinda
  fullname: Tsona Tchinda, Narcisse
  organization: Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University
– sequence: 4
  givenname: Lin
  surname: Du
  fullname: Du, Lin
  email: lindu@sdu.edu.cn
  organization: Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University
BookMark eNp9kDtPwzAUhS1UJAr0DzBFYiVwY8dxwlaq8pCKylBYLdtxSqrETu1k4N_jNkgwMd2HvnPu1TlHE2ONRugqgdsEgN35FBjOYsA0BiAZjdkJmuKkyOOMFnjypz9DM-93AIAhDTObov2rcLXR0UNtt9rUKvqwjejrRkdrtxWHxcK2nR1M6e-jN2fLQfW1NTfRsq29P3bzvrW--9QuwBsnjK-sa8VICVNGi6YOo46WVaVV7y_RaSUar2c_9QK9Py43i-d4tX56WcxXscIM93EhKQhKtJLApCQESipxksmMMV2kOCuVYjQHRYskT4ucSMoUyXSeUiFVxTC5QNejb-fsftC-5zs7OBNOchKM0iRneR4oPFLKWe-drnjnwrvuiyfAD-nyMV0e0uXHdDkLIjKKfIDNVrtf639U38kBfwE
Cites_doi 10.1038/nature00775
10.1021/acs.jpca.2c09095
10.5194/acp-20-6081-2020
10.1016/j.ecss.2020.106864
10.1016/j.marenvres.2023.106177
10.1021/acs.est.3c10851
10.5194/acp-14-9317-2014
10.5194/acp-21-8999-2021
10.1038/nature10580
10.1016/j.scitotenv.2020.143655
10.1021/acs.est.7b06105
10.1007/b10449
10.1038/s41467-022-30456-8
10.1029/2021JD035979
10.1111/1462-2920.14461
10.5194/acp-19-10447-2019
10.5194/bg-12-637-2015
10.1038/s41558-023-01671-y
10.1029/2020MS002391
10.1021/acs.est.0c03937
10.1029/2010GB003850
10.1021/acs.est.7b00159
10.1016/j.marchem.2016.02.003
10.1029/2021JD034859
10.1038/s41612-024-00563-y
10.1016/j.jhazmat.2008.11.048
10.3389/fmars.2023.1100678
10.1021/acs.est.5b03324
10.1063/1.4819024
10.1007/s43630-023-00371-y
10.5194/bg-16-1167-2019
10.1111/1462-2920.15837
10.1007/s10533-018-0506-2
10.1016/j.atmosenv.2014.07.035
10.1021/es4004685
10.5194/bg-17-2181-2020
10.5194/acp-22-16003-2022
10.1007/s40726-024-00339-1
10.1021/acs.est.9b04721
10.5194/acp-9-2051-2009
10.1029/2021GL094068
10.5194/acp-21-9955-2021
10.1021/es4038325
10.1029/2022MS003239
10.5194/bg-20-851-2023
10.1039/D3EA00076A
10.1007/s00343-020-0007-8
10.3390/rs16152788
10.1021/acs.est.1c01949
10.1029/2011GL047116
10.1021/jp511616j
10.1021/acsearthspacechem.2c00385
10.5194/acp-13-8915-2013
10.5194/acp-19-9613-2019
10.5194/acp-21-7611-2021
10.1038/s41586-023-06119-z
10.1038/s41467-018-04528-7
10.1021/acs.est.4c03947
10.1098/rspa.2019.0769
10.5194/acp-24-3379-2024
10.1073/pnas.2110864119
10.1029/2023JD040635
10.1016/j.gloplacha.2024.104635
10.1080/02786826.2016.1236182
10.1016/j.scitotenv.2021.150002
10.5194/acp-22-13449-2022
10.1021/acs.est.8b03995
10.1016/j.scitotenv.2021.149768
10.1146/annurev.energy.28.011503.163425
10.1021/acs.estlett.1c00880
10.1016/j.scitotenv.2018.09.084
10.1021/acs.est.2c01579
10.1016/j.scitotenv.2022.160456
10.1038/s41467-024-46744-4
10.1016/j.scitotenv.2024.175841
10.1021/es00131a008
10.1029/2024GL108140
10.1038/s41396-018-0072-6
10.1021/acs.est.0c04323
10.5194/acp-21-3395-2021
10.1016/j.marchem.2008.10.002
10.1016/j.scitotenv.2020.144031
10.5194/bg-17-2593-2020
10.5194/acp-12-1239-2012
10.1029/95GL03783
10.1029/2023GL106541
10.1016/j.atmosenv.2018.05.054
10.1021/acs.jpca.5b04887
10.5194/acp-24-9019-2024
10.5194/acp-14-751-2014
10.1021/acs.jpclett.9b02567
10.1016/j.scitotenv.2023.164879
10.4209/aaqr.220336
10.1146/annurev-ecolsys-102722-125156
10.1073/pnas.1511463112
10.5194/acp-17-6723-2017
10.5194/acp-10-2007-2010
10.1002/kin.21303
10.1016/j.scitotenv.2021.145054
10.1071/EN21073
10.1038/s41612-022-00316-9
10.1029/2020JD033529
10.5194/gmd-13-2587-2020
10.5194/acp-22-14147-2022
10.1021/es00016a001
10.1021/acs.est.4c10657
10.1002/2013JC009329
10.1016/j.marpolbul.2021.112635
10.5194/acp-18-13617-2018
10.5194/essd-8-697-2016
10.1021/acs.jpca.1c02465
10.1021/acsearthspacechem.9b00325
10.1038/326655a0
10.1525/elementa.2022.00129
10.1073/pnas.1919344117
10.1029/2021GL096838
10.1029/2005GL022592
10.1038/s43017-022-00296-7
10.1021/acs.est.2c05154
10.1021/acs.accounts.0c00095
10.1007/s40726-020-00139-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Dec 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Dec 2025
DBID AAYXX
CITATION
DOI 10.1007/s40726-025-00365-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2198-6592
ExternalDocumentID 10_1007_s40726_025_00365_7
GeographicLocations East China Sea
Yellow Sea
GeographicLocations_xml – name: East China Sea
– name: Yellow Sea
GroupedDBID 0R~
203
406
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFDZB
AFOHR
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHPBZ
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVXWI
AXYYD
AYFIA
BENPR
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
FEDTE
FERAY
FIGPU
FNLPD
GGCAI
GGRSB
GJIRD
HG6
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
NPVJJ
NQJWS
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
ABRTQ
ID FETCH-LOGICAL-c272t-9b50a53ecb07bb330d5b216b677e9426dcc7580c59184983b57c36e845abcf723
ISSN 2198-6592
IngestDate Fri Jul 25 09:30:54 EDT 2025
Thu Jul 03 08:38:34 EDT 2025
Sat Jun 07 01:11:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Volatile organic compounds
Marine organism
Secondary organic aerosol
Photooxidation
Climate feedback
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c272t-9b50a53ecb07bb330d5b216b677e9426dcc7580c59184983b57c36e845abcf723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3216418788
PQPubID 2044259
ParticipantIDs proquest_journals_3216418788
crossref_primary_10_1007_s40726_025_00365_7
springer_journals_10_1007_s40726_025_00365_7
PublicationCentury 2000
PublicationDate 2025-06-06
PublicationDateYYYYMMDD 2025-06-06
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-06
  day: 06
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Current pollution reports
PublicationTitleAbbrev Curr Pollution Rep
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References J Li (365_CR95) 2023; 9
365_CR58
S-H Mao (365_CR26) 2021; 170
365_CR57
365_CR56
W Zhang (365_CR109) 2024; 24
O Zafiriou (365_CR19) 1975; 33
N Tripathi (365_CR33) 2020; 4
365_CR52
E Jang (365_CR44) 2022; 803
MY Danilin (365_CR84) 1996; 23
C Brühl (365_CR41) 2012; 12
YA Bhatti (365_CR45) 2024; 129
R Charlson (365_CR4) 1987; 326
365_CR48
ME Cooke (365_CR98) 2024; 58
F Jiang (365_CR24) 2025; 244
Q-Q Qi (365_CR10) 2023; 893
T Berndt (365_CR46) 2019; 10
365_CR47
A Saiz-Lopez (365_CR105) 2023; 618
M Song (365_CR91) 2019; 650
DO De Haan (365_CR74) 2018; 52
Z Lei (365_CR97) 2022; 56
M Saunois (365_CR123) 2016; 8
MA Navarro (365_CR80) 2015; 112
A Dias (365_CR16) 2020; 242
Z Yu (365_CR8) 2021; 768
RL Jackson (365_CR38) 2020; 17
365_CR70
365_CR112
365_CR113
365_CR110
M Herrmann (365_CR78) 2021; 21
A Voliotis (365_CR94) 2022; 22
T Rosswall (365_CR5) 1991; 25
F Cairo (365_CR111) 2024; 16
V Gros (365_CR30) 2023; 20
J Sun (365_CR60) 2019; 21
N Meskhidze (365_CR11) 2015; 12
RG Zepp (365_CR17) 1985; 19
V Ferracci (365_CR34) 2024; 15
KH Møller (365_CR65) 2020; 54
P Mettke (365_CR100) 2023; 7
S-M Liang (365_CR29) 2023; 10
365_CR107
J Li (365_CR114) 2022; 3
RM Moore (365_CR77) 2003
ER Moore (365_CR13) 2022; 24
MH Powelson (365_CR76) 2014; 48
365_CR103
T Olenius (365_CR68) 2013; 139
TJ McGenity (365_CR90) 2018; 12
G Luo (365_CR23) 2010; 10
X Tian (365_CR73) 2022; 9
MA Alam (365_CR63) 2019; 51
S Ahmed (365_CR85) 2023; 11
R Saleh (365_CR106) 2020; 6
GH Bernhard (365_CR124) 2023; 22
A Fiehn (365_CR86) 2017; 17
J Shen (365_CR51) 2022; 56
CA Cuevas (365_CR79) 2022; 119
Q Li (365_CR82) 2021; 55
MP Vermeuel (365_CR54) 2020; 54
M Yang (365_CR20) 2013; 118
E Assaf (365_CR49) 2023; 127
K Sindelarova (365_CR1) 2014; 14
PK Quinn (365_CR117) 2011; 480
365_CR99
Q Ye (365_CR50) 2022; 22
O Krüger (365_CR115) 2011; 38
B Qu (365_CR116) 2021; 39
M Mehlmann (365_CR32) 2020; 22
C Wohl (365_CR28) 2020; 17
DO De Haan (365_CR6) 2017; 51
KH Bates (365_CR92) 2019; 19
A Kansal (365_CR3) 2009; 166
J Zhao (365_CR37) 2024; 7
GA Novak (365_CR18) 2020; 53
C Hughes (365_CR14) 2016; 181
PI Palmer (365_CR22) 2005; 32
365_CR83
J-L Li (365_CR9) 2021; 758
J Li (365_CR35) 2018; 187
DJ Price (365_CR64) 2014; 96
DS Jo (365_CR96) 2021; 21
H Shen (365_CR121) 2021; 764
365_CR89
365_CR88
W Zhang (365_CR93) 2025; 59
EE Dahl (365_CR59) 2008; 112
S Zhou (365_CR71) 2019; 19
E Dovrou (365_CR101) 2021; 21
J Villamayor (365_CR81) 2023; 13
Z He (365_CR31) 2021; 18
X Ni (365_CR119) 2024; 952
F Ziska (365_CR25) 2013; 13
A Lana (365_CR21) 2011; 25
R Ossola (365_CR42) 2019; 53
L Tashmim (365_CR55) 2024; 24
Q Chen (365_CR43) 2018; 18
R Rinnan (365_CR39) 2024; 55
H-B Xie (365_CR61) 2015; 49
Y Yang (365_CR2) 2025; 11
R Simó (365_CR15) 2018; 141
T Berndt (365_CR66) 2021; 125
A Edtbauer (365_CR27) 2020; 20
R Bénard (365_CR40) 2019; 16
LP Chan (365_CR72) 2013; 47
D Zhao (365_CR12) 2023; 191
PR Veres (365_CR53) 2020; 117
W Marrero-Ortiz (365_CR75) 2019; 53
RG Prinn (365_CR118) 2003; 28
S Fan (365_CR120) 2023; 860
T Berndt (365_CR69) 2014; 14
Q Li (365_CR104) 2022; 13
M Brüggemann (365_CR7) 2018; 9
J Manager (365_CR108) 2023; 23
Z Ding (365_CR102) 2021; 801
DJ Price (365_CR62) 2016; 50
MK Louie (365_CR67) 2016; 120
CD O’Dowd (365_CR87) 2002; 417
FE Hopkins (365_CR36) 2020; 476
M Zhao (365_CR122) 2024; 58
References_xml – volume: 417
  start-page: 632
  year: 2002
  ident: 365_CR87
  publication-title: Nature
  doi: 10.1038/nature00775
– volume: 127
  start-page: 2336
  year: 2023
  ident: 365_CR49
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.2c09095
– volume: 20
  start-page: 6081
  year: 2020
  ident: 365_CR27
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-20-6081-2020
– volume: 242
  year: 2020
  ident: 365_CR16
  publication-title: Estuar Coast Shelf Sci
  doi: 10.1016/j.ecss.2020.106864
– volume: 191
  year: 2023
  ident: 365_CR12
  publication-title: Mar Environ Res
  doi: 10.1016/j.marenvres.2023.106177
– volume: 58
  start-page: 10675
  year: 2024
  ident: 365_CR98
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.3c10851
– volume: 14
  start-page: 9317
  year: 2014
  ident: 365_CR1
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-14-9317-2014
– volume: 21
  start-page: 8999
  year: 2021
  ident: 365_CR101
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-21-8999-2021
– volume: 480
  start-page: 51
  year: 2011
  ident: 365_CR117
  publication-title: Nature
  doi: 10.1038/nature10580
– volume: 758
  year: 2021
  ident: 365_CR9
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.143655
– volume: 52
  start-page: 4061
  year: 2018
  ident: 365_CR74
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b06105
– start-page: 85
  volume-title: Natural Production of organohalogen compounds
  year: 2003
  ident: 365_CR77
  doi: 10.1007/b10449
– volume: 13
  start-page: 2768
  year: 2022
  ident: 365_CR104
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-30456-8
– ident: 365_CR110
  doi: 10.1029/2021JD035979
– volume: 21
  start-page: 513
  year: 2019
  ident: 365_CR60
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.14461
– volume: 19
  start-page: 10447
  year: 2019
  ident: 365_CR71
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-19-10447-2019
– volume: 12
  start-page: 637
  year: 2015
  ident: 365_CR11
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-637-2015
– volume: 13
  start-page: 554
  year: 2023
  ident: 365_CR81
  publication-title: Nat Clim Chang
  doi: 10.1038/s41558-023-01671-y
– ident: 365_CR83
  doi: 10.1029/2020MS002391
– volume: 54
  start-page: 11087
  year: 2020
  ident: 365_CR65
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c03937
– volume: 25
  start-page: 243
  year: 2011
  ident: 365_CR21
  publication-title: Global Biogeochem Cycles
  doi: 10.1029/2010GB003850
– volume: 51
  start-page: 7458
  year: 2017
  ident: 365_CR6
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b00159
– volume: 181
  start-page: 1
  year: 2016
  ident: 365_CR14
  publication-title: Mar Chem
  doi: 10.1016/j.marchem.2016.02.003
– ident: 365_CR89
  doi: 10.1029/2021JD034859
– volume: 7
  start-page: 1
  year: 2024
  ident: 365_CR37
  publication-title: NPJ Clim Atmos Sci
  doi: 10.1038/s41612-024-00563-y
– volume: 166
  start-page: 17
  year: 2009
  ident: 365_CR3
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2008.11.048
– volume: 10
  start-page: 1100678
  year: 2023
  ident: 365_CR29
  publication-title: Front Mar Sci
  doi: 10.3389/fmars.2023.1100678
– volume: 49
  start-page: 13246
  year: 2015
  ident: 365_CR61
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b03324
– volume: 139
  year: 2013
  ident: 365_CR68
  publication-title: J Chem Phys
  doi: 10.1063/1.4819024
– volume: 22
  start-page: 937
  year: 2023
  ident: 365_CR124
  publication-title: Photochem Photobiol Sci
  doi: 10.1007/s43630-023-00371-y
– volume: 16
  start-page: 1167
  year: 2019
  ident: 365_CR40
  publication-title: Biogeosciences
  doi: 10.5194/bg-16-1167-2019
– volume: 24
  start-page: 212
  year: 2022
  ident: 365_CR13
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15837
– volume: 141
  start-page: 125
  year: 2018
  ident: 365_CR15
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-018-0506-2
– volume: 96
  start-page: 135
  year: 2014
  ident: 365_CR64
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2014.07.035
– volume: 47
  start-page: 5755
  year: 2013
  ident: 365_CR72
  publication-title: Environ Sci Technol
  doi: 10.1021/es4004685
– volume: 17
  start-page: 2181
  year: 2020
  ident: 365_CR38
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-2181-2020
– volume: 22
  start-page: 16003
  year: 2022
  ident: 365_CR50
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-22-16003-2022
– volume: 11
  start-page: 10
  year: 2025
  ident: 365_CR2
  publication-title: Curr Pollut Rep
  doi: 10.1007/s40726-024-00339-1
– volume: 53
  start-page: 13191
  year: 2019
  ident: 365_CR42
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b04721
– ident: 365_CR70
  doi: 10.5194/acp-9-2051-2009
– ident: 365_CR56
  doi: 10.1029/2021GL094068
– ident: 365_CR52
  doi: 10.5194/acp-21-9955-2021
– volume: 48
  start-page: 985
  year: 2014
  ident: 365_CR76
  publication-title: Environ Sci Technol
  doi: 10.1021/es4038325
– ident: 365_CR103
  doi: 10.1029/2022MS003239
– volume: 20
  start-page: 851
  year: 2023
  ident: 365_CR30
  publication-title: Biogeosciences
  doi: 10.5194/bg-20-851-2023
– ident: 365_CR99
  doi: 10.1039/D3EA00076A
– volume: 39
  start-page: 110
  year: 2021
  ident: 365_CR116
  publication-title: J Ocean Limnol
  doi: 10.1007/s00343-020-0007-8
– volume: 16
  start-page: 2788
  year: 2024
  ident: 365_CR111
  publication-title: Remote Sens
  doi: 10.3390/rs16152788
– volume: 55
  start-page: 13625
  year: 2021
  ident: 365_CR82
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.1c01949
– volume: 38
  start-page: L08809
  year: 2011
  ident: 365_CR115
  publication-title: Geophys Res Lett
  doi: 10.1029/2011GL047116
– ident: 365_CR47
  doi: 10.1021/jp511616j
– volume: 22
  start-page: 679
  year: 2020
  ident: 365_CR32
  publication-title: Environ Sci: Process Impacts
– volume: 7
  start-page: 1025
  year: 2023
  ident: 365_CR100
  publication-title: ACS Earth Space Chem
  doi: 10.1021/acsearthspacechem.2c00385
– volume: 13
  start-page: 8915
  year: 2013
  ident: 365_CR25
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-13-8915-2013
– volume: 19
  start-page: 9613
  year: 2019
  ident: 365_CR92
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-19-9613-2019
– volume: 21
  start-page: 7611
  year: 2021
  ident: 365_CR78
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-21-7611-2021
– volume: 618
  start-page: 967
  year: 2023
  ident: 365_CR105
  publication-title: Nature
  doi: 10.1038/s41586-023-06119-z
– volume: 9
  start-page: 2101
  year: 2018
  ident: 365_CR7
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04528-7
– volume: 58
  start-page: 17334
  year: 2024
  ident: 365_CR122
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.4c03947
– volume: 476
  start-page: 20190769
  year: 2020
  ident: 365_CR36
  publication-title: Proc R Soc A-Math Phys Eng Sci
  doi: 10.1098/rspa.2019.0769
– volume: 24
  start-page: 3379
  year: 2024
  ident: 365_CR55
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-24-3379-2024
– volume: 119
  year: 2022
  ident: 365_CR79
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2110864119
– volume: 129
  start-page: e2023JD040635
  year: 2024
  ident: 365_CR45
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2023JD040635
– volume: 244
  year: 2025
  ident: 365_CR24
  publication-title: Glob Planet Change
  doi: 10.1016/j.gloplacha.2024.104635
– volume: 50
  start-page: 1216
  year: 2016
  ident: 365_CR62
  publication-title: Aerosol Sci Tech
  doi: 10.1080/02786826.2016.1236182
– volume: 9
  start-page: 22
  year: 2023
  ident: 365_CR95
  publication-title: Curr Pollut Rep
– volume: 803
  year: 2022
  ident: 365_CR44
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.150002
– ident: 365_CR58
  doi: 10.5194/acp-22-13449-2022
– volume: 53
  start-page: 117
  year: 2019
  ident: 365_CR75
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b03995
– volume: 801
  year: 2021
  ident: 365_CR102
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.149768
– volume: 28
  start-page: 29
  year: 2003
  ident: 365_CR118
  publication-title: Annu Rev Env Resour
  doi: 10.1146/annurev.energy.28.011503.163425
– volume: 9
  start-page: 16
  year: 2022
  ident: 365_CR73
  publication-title: Environ Sci Technol Lett
  doi: 10.1021/acs.estlett.1c00880
– volume: 650
  start-page: 951
  year: 2019
  ident: 365_CR91
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.09.084
– volume: 56
  start-page: 10596
  year: 2022
  ident: 365_CR97
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c01579
– volume: 860
  year: 2023
  ident: 365_CR120
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.160456
– volume: 15
  start-page: 2571
  year: 2024
  ident: 365_CR34
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-46744-4
– volume: 952
  year: 2024
  ident: 365_CR119
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2024.175841
– volume: 19
  start-page: 74
  year: 1985
  ident: 365_CR17
  publication-title: Environ Sci Technol
  doi: 10.1021/es00131a008
– ident: 365_CR112
  doi: 10.1029/2024GL108140
– volume: 12
  start-page: 931
  year: 2018
  ident: 365_CR90
  publication-title: ISME J
  doi: 10.1038/s41396-018-0072-6
– volume: 54
  start-page: 12521
  year: 2020
  ident: 365_CR54
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c04323
– volume: 21
  start-page: 3395
  year: 2021
  ident: 365_CR96
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-21-3395-2021
– volume: 112
  start-page: 137
  year: 2008
  ident: 365_CR59
  publication-title: Mar Chem
  doi: 10.1016/j.marchem.2008.10.002
– volume: 764
  year: 2021
  ident: 365_CR121
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.144031
– volume: 17
  start-page: 2593
  year: 2020
  ident: 365_CR28
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-2593-2020
– volume: 12
  start-page: 1239
  year: 2012
  ident: 365_CR41
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-12-1239-2012
– volume: 23
  start-page: 153
  year: 1996
  ident: 365_CR84
  publication-title: Geophys Res Lett
  doi: 10.1029/95GL03783
– ident: 365_CR107
  doi: 10.1029/2023GL106541
– volume: 187
  start-page: 131
  year: 2018
  ident: 365_CR35
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2018.05.054
– volume: 120
  start-page: 1358
  year: 2016
  ident: 365_CR67
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.5b04887
– volume: 24
  start-page: 9019
  year: 2024
  ident: 365_CR109
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-24-9019-2024
– volume: 14
  start-page: 751
  year: 2014
  ident: 365_CR69
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-14-751-2014
– volume: 10
  start-page: 6478
  year: 2019
  ident: 365_CR46
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.9b02567
– volume: 893
  year: 2023
  ident: 365_CR10
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.164879
– volume: 23
  year: 2023
  ident: 365_CR108
  publication-title: Aerosol Air Qual Res
  doi: 10.4209/aaqr.220336
– volume: 55
  start-page: 227
  year: 2024
  ident: 365_CR39
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-102722-125156
– volume: 112
  start-page: 13789
  year: 2015
  ident: 365_CR80
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1511463112
– volume: 17
  start-page: 6723
  year: 2017
  ident: 365_CR86
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-17-6723-2017
– volume: 10
  start-page: 2007
  year: 2010
  ident: 365_CR23
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-10-2007-2010
– volume: 51
  start-page: 723
  year: 2019
  ident: 365_CR63
  publication-title: Int J Chem Kinet
  doi: 10.1002/kin.21303
– volume: 768
  year: 2021
  ident: 365_CR8
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.145054
– volume: 18
  start-page: 226
  year: 2021
  ident: 365_CR31
  publication-title: Environ Chem
  doi: 10.1071/EN21073
– ident: 365_CR88
  doi: 10.1038/s41612-022-00316-9
– volume: 33
  start-page: 75
  year: 1975
  ident: 365_CR19
  publication-title: J Mar Res
– ident: 365_CR113
  doi: 10.1029/2020JD033529
– ident: 365_CR57
  doi: 10.5194/gmd-13-2587-2020
– volume: 22
  start-page: 14147
  year: 2022
  ident: 365_CR94
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-22-14147-2022
– volume: 25
  start-page: 567
  year: 1991
  ident: 365_CR5
  publication-title: Environ Sci Technol
  doi: 10.1021/es00016a001
– volume: 59
  start-page: 2554
  year: 2025
  ident: 365_CR93
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.4c10657
– volume: 118
  start-page: 6774
  year: 2013
  ident: 365_CR20
  publication-title: J Geophys Res:Oceans
  doi: 10.1002/2013JC009329
– volume: 170
  year: 2021
  ident: 365_CR26
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2021.112635
– volume: 18
  start-page: 13617
  year: 2018
  ident: 365_CR43
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-18-13617-2018
– volume: 8
  start-page: 697
  year: 2016
  ident: 365_CR123
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-8-697-2016
– volume: 125
  start-page: 4454
  year: 2021
  ident: 365_CR66
  publication-title: J Phys Chem A
  doi: 10.1021/acs.jpca.1c02465
– volume: 4
  start-page: 583
  year: 2020
  ident: 365_CR33
  publication-title: ACS Earth Space Chem
  doi: 10.1021/acsearthspacechem.9b00325
– volume: 326
  start-page: 655
  year: 1987
  ident: 365_CR4
  publication-title: Nature
  doi: 10.1038/326655a0
– volume: 11
  start-page: 00129
  year: 2023
  ident: 365_CR85
  publication-title: Elementa-Sci Anthrop
  doi: 10.1525/elementa.2022.00129
– volume: 117
  start-page: 4505
  year: 2020
  ident: 365_CR53
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1919344117
– ident: 365_CR48
  doi: 10.1029/2021GL096838
– volume: 32
  start-page: L09805
  year: 2005
  ident: 365_CR22
  publication-title: Geophys Res Lett
  doi: 10.1029/2005GL022592
– volume: 3
  start-page: 363
  year: 2022
  ident: 365_CR114
  publication-title: Nat Rev Earth Environ
  doi: 10.1038/s43017-022-00296-7
– volume: 56
  start-page: 13931
  year: 2022
  ident: 365_CR51
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.2c05154
– volume: 53
  start-page: 1014
  year: 2020
  ident: 365_CR18
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.0c00095
– volume: 6
  start-page: 90
  year: 2020
  ident: 365_CR106
  publication-title: Curr Pollut Rep
  doi: 10.1007/s40726-020-00139-3
SSID ssj0002046597
Score 2.2936404
SecondaryResourceType review_article
Snippet Purpose of Review Biogenic volatile organic compounds (BVOCs) play a significant role in the global carbon cycle and climate change. While significant...
Purpose of ReviewBiogenic volatile organic compounds (BVOCs) play a significant role in the global carbon cycle and climate change. While significant...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 37
SubjectTerms Aerosols
Air pollution
Aquatic Pollution
Atmosphere
Atmospheric chemistry
Atmospheric Protection/Air Quality Control/Air Pollution
Autumn
Bacteria
Biological activity
Biota
Carbon
Carbon cycle
Chemical reactions
Chlorophyll
Climate change
Climate effects
Earth and Environmental Science
Ecosystems
Emissions
Environment
Environmental Law/Policy/Ecojustice
Feedback
Global climate
Heterogeneity
Industrial Pollution Prevention
Isomerization
Marine biology
Marine ecosystems
Metabolism
Microorganisms
Monitoring/Environmental Analysis
Nitrogen
Organic compounds
Oxidation
Photodegradation
Physiology
Plankton
Pollution
Radiation
Reaction mechanisms
Review
Seasonal variations
Seawater
Sulfur
Summer
Tropopause
VOCs
Volatile organic compounds
Waste Water Technology
Water Management
Water Pollution Control
Winter
Title Marine Biogenic Volatile Organic Compounds: Production, Emission, Atmospheric Transformation, and Climate Effects
URI https://link.springer.com/article/10.1007/s40726-025-00365-7
https://www.proquest.com/docview/3216418788
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05b9swFCZcZ2mHoCfqJik4dLNVSKQkit2cpEFQIEEHp8gmiEcAAa6cVPKQ_ov-4zweOmw3QNNFEKhnmeD7xHfwHQh9EmB1cCVIEOmUBrHQPBChUIEiPCu0StNQGz_kxWV6fhV_u06uR6M_g6ildSM-y99_zSv5H67CGPDVZMk-gbPdS2EA7oG_cAUOw_WfeHxRmNw9008SSEo5_bEykW1L7TMspf3aTd8kG_f23RV3LX33DmBw7e_nzc9VbeoLwE8WA03WPTWu9ZNlCQN66ood10OVtq3wdGuaJls0-XOI3lfvo37L6n4QAVS6saJarrz0NA4EYxlMFybAUxVu9zcdofoTpNO19yQM3RUksWFV6Y67csvh2fvcnFyyGyBspllgjn03dutoG5U7QsDFfdSm9JsJsIYphCaWj_UirwtE7Io2W-IciHNLnLNnaI-A5UHGaG9-dnx82TnuSBjDnJhPwLJpmDv_tKnk9JbL1mG71WEWL9G-Nz7w3CHpFRrp6jV6MShJ-QbdOUzhFlO4xRT2mMIdpr7gHlEz3OJphgdowptommHAEvZYwh5Lb9HV2dfFyXng23IEkjDSBFwkYZFQLUXIhKA0VIkgUSpSxjQHhU9JCUZoKBMeZTHPqEiYpKnO4qQQ8oYR-g6Nq1Wl3yOsJKW80EVSgJYUpzHoyiqmyoiFGw7CZ4Km7Trmt676Sv44yybosF3q3H-ldU5hanGUsSyboFm7_P3jx9_24WnkB-h5D_dDNG5-rfUR6KuN-OgR9AAb2JZI
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marine+Biogenic+Volatile+Organic+Compounds%3A+Production%2C+Emission%2C+Atmospheric+Transformation%2C+and+Climate+Effects&rft.jtitle=Current+pollution+reports&rft.au=Wang%2C+Jinyan&rft.au=Li%2C+Jianlong&rft.au=Tsona+Tchinda%2C+Narcisse&rft.au=Du%2C+Lin&rft.date=2025-06-06&rft.pub=Springer+International+Publishing&rft.eissn=2198-6592&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs40726-025-00365-7&rft.externalDocID=10_1007_s40726_025_00365_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6592&client=summon