Marine Biogenic Volatile Organic Compounds: Production, Emission, Atmospheric Transformation, and Climate Effects
Purpose of Review Biogenic volatile organic compounds (BVOCs) play a significant role in the global carbon cycle and climate change. While significant advancements have been made in terrestrial BVOCs research, critical gaps persist in understanding marine BVOCs, particularly their emission, multipha...
Saved in:
Published in | Current pollution reports Vol. 11; no. 1; p. 37 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
06.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose of Review
Biogenic volatile organic compounds (BVOCs) play a significant role in the global carbon cycle and climate change. While significant advancements have been made in terrestrial BVOCs research, critical gaps persist in understanding marine BVOCs, particularly their emission, multiphase oxidation pathways, and climate feedback mechanisms.
Recent Findings
Current atmospheric models underestimate the flux of marine VOCs. Recent studies have revealed isomerization pathways and heterogeneous reaction mechanisms, thereby revising the traditional theory dominated solely by gas-phase oxidation in atmospheric transformation of BVOCs. This advancement enables more accurate prediction of oxidation product distributions. These products can drive new particle formation at the tropopause, thereby influencing radiation balance and regulating climate through resultant feedback mechanisms.
Summary
This review systematically elaborates the sources and sinks of marine BVOCs, their atmospheric transformation mechanisms, and climate feedback, highlighting the critical role of marine biota in global climate regulation. The production and emission of marine BVOCs exhibit significant spatiotemporal heterogeneity, primarily regulated by marine internal processes including biological activities and chemical reactions. Upon entering the atmosphere via sea-air exchange, marine BVOCs undergo complex atmospheric oxidation processes to form aerosols (e.g., sulfur-containing aerosols, brown carbon) and reactive halogen species, thereby influencing the radiation balance and atmospheric oxidation capacity while exerting crucial feedback on global climate. This provides an overarching perspective for a more comprehensive understanding of the role of marine ecosystems in global climate regulation.
Graphical Abstract |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2198-6592 2198-6592 |
DOI: | 10.1007/s40726-025-00365-7 |