P123-CoMgAl composite for sustainable and high-conversion epoxide ring-opening polymerization
The ring-opening polymerization lays the foundation for synthesizing polypropylene glycol. Nevertheless, homogeneous alkali catalysts usually require complex post-treatments, hindering green synthesis and environmental sustainability. Here, we studied a heterogeneous epoxide polymerization method ba...
Saved in:
Published in | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology Vol. 27; no. 5; p. 128 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The ring-opening polymerization lays the foundation for synthesizing polypropylene glycol. Nevertheless, homogeneous alkali catalysts usually require complex post-treatments, hindering green synthesis and environmental sustainability. Here, we studied a heterogeneous epoxide polymerization method based on a P123-modified nanocomposite layered double oxide (CoMgAl-LDO(P123)). Thereafter, the composition, crystal structure, morphology, and thermal stability of the catalyst were characterized through SEM, XRD, FTIR, XPS, BET, and TG-DTG techniques. The results indicated that due to the designable and self-assembled P123 micelles, CoMgAl-LDO(P123) generated consistent mesoporous channels and a larger specific surface area. The introduction of cobalt enriched the alkaline sites on the CoMgAl-LDO(P123) surface. In the synthesis of small molecular weight poly(propylene glycol) (i.e., number average molecular weight less than 500), the catalytic performance of CoMgAl-LDO(P123) for the conversion of propylene oxide reached 96.3% under the optimal reaction conditions, which was superior to that of other catalysts. Our strategy addresses the trade-off issue that alkali catalysts faced in terms of sustainability and operational complexity, holding great promise in green chemistry. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-025-06316-z |