Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3-CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress

Mesembryanthemum crystallinum L. (Aizoaceae) is a facultative annual halophyte and a C3-photosynthesis/crassulacean acid metabolism intermediate species currently used as a model plant in stress physiology. Both salinity and high light irradiance stress are known to induce CAM in this species. The p...

Full description

Saved in:
Bibliographic Details
Published inJournal of plant physiology Vol. 164; no. 7; pp. 904 - 912
Main Authors Broetto, F, Duarte, H.M, Lüttge, U
Format Journal Article
LanguageEnglish
Published Jena Elsevier 01.07.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mesembryanthemum crystallinum L. (Aizoaceae) is a facultative annual halophyte and a C3-photosynthesis/crassulacean acid metabolism intermediate species currently used as a model plant in stress physiology. Both salinity and high light irradiance stress are known to induce CAM in this species. The present study was performed to provide a diagnosis of alterations at the photosystem II level during salinity and irradiance stress. Plants were subjected for up to 13 days to either 0.4 M NaCl salinity or high irradiance of 1000 μmol m-2 s-1, as well as to both stress factors combined (LLSA=low light plus salt; HLCO=high light of 1000 μmol m-2 s-1, no salt; HLSA=high light plus salt). A control of LLCO=low light of 200 μmol m-2 s-1, no salt was used. Parameters of chlorophyll a fluorescence of photosystem II (PSII) were measured with a pulse amplitude modulated fluorometer. HLCO and LLSA conditions induced a weak degree of CAM with day/night changes of malate levels (Δmalate) of approximately 12 mM in the course of the experiment, while HLSA induced stronger CAM of Δmalate approximately 20 mM. Effective quantum yield of PSII, ΔF/F'(m), was only slightly affected by LLSA, somewhat reduced during the course of the experiment by HLCO and clearly reduced by HLSA. Potential quantum efficiency of PSII, F(v)/F(m), at predawn times was not affected by any of the conditions, always remaining at > or = 0.8, showing that there was no acute photoinhibition. During the course of the days HL alone (HLCO) also did not elicit photoinhibition; salt alone (LLSA) caused acute photoinhibition which was amplified by the combination of the two stresses (HLSA). Non-photochemical, NPQ, quenching remained low (<0.5) under LLCO, LLSA and HLCO and increased during the course of the experiment under HLSA to 1-2. Maximum apparent photosynthetic electron transport rates, ETR(max), declined during the daily courses and were reduced by LLSA and to a similar extent by HLSA. It is concluded that M. crystallinum expresses effective stress tolerance mechanisms but photosynthetic capacity is reduced by the synergistic effects of salinity and light irradiance stress combined.
Bibliography:http://dx.doi.org/10.1016/j.jplph.2006.04.010
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0176-1617
1618-1328
DOI:10.1016/j.jplph.2006.04.010