Impact of a variable cosmological constant on stellar matter configurations in Finch-Skea spacetime
In this study, a variable cosmological constant model is created for anisotropic star structures, which satisfies the remaining physical requirements, and validates the required energy conditions (Ecs), and TOV equations. First, the Finch-Skea spacetime solution is taken into account as a static sph...
Saved in:
Published in | Astrophysics and space science Vol. 370; no. 5; p. 46 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, a variable cosmological constant model is created for anisotropic star structures, which satisfies the remaining physical requirements, and validates the required energy conditions (Ecs), and TOV equations. First, the Finch-Skea spacetime solution is taken into account as a static spherically symmetric metric. Moreover, external Schwarzschild geometry is taken into account to correlate our internal stellar structure and determine the values of the constants used in the Finch-Skea spacetime solution. Finally, in this paper, multiple aspects are discussed, such as the radius, compactness, stresses, stability, density profile, and masses under the variable cosmological constant model in
f
(
R
,
T
)
gravity for various stars. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0004-640X 1572-946X |
DOI: | 10.1007/s10509-025-04435-6 |