Impact of a variable cosmological constant on stellar matter configurations in Finch-Skea spacetime

In this study, a variable cosmological constant model is created for anisotropic star structures, which satisfies the remaining physical requirements, and validates the required energy conditions (Ecs), and TOV equations. First, the Finch-Skea spacetime solution is taken into account as a static sph...

Full description

Saved in:
Bibliographic Details
Published inAstrophysics and space science Vol. 370; no. 5; p. 46
Main Authors Ilyas, M., Maha, Nawaz, Salma, Sher, Falak, Khan, Fawad
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, a variable cosmological constant model is created for anisotropic star structures, which satisfies the remaining physical requirements, and validates the required energy conditions (Ecs), and TOV equations. First, the Finch-Skea spacetime solution is taken into account as a static spherically symmetric metric. Moreover, external Schwarzschild geometry is taken into account to correlate our internal stellar structure and determine the values of the constants used in the Finch-Skea spacetime solution. Finally, in this paper, multiple aspects are discussed, such as the radius, compactness, stresses, stability, density profile, and masses under the variable cosmological constant model in f ( R , T ) gravity for various stars.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-640X
1572-946X
DOI:10.1007/s10509-025-04435-6