Minimax games for stochastic systems subject to relative entropy uncertainty: applications to SDEs on Hilbert spaces

In this paper, we consider minimax games for stochastic uncertain systems with the pay-off being a nonlinear functional of the uncertain measure where the uncertainty is measured in terms of relative entropy between the uncertain and the nominal measure. The maximizing player is the uncertain measur...

Full description

Saved in:
Bibliographic Details
Published inMathematics of control, signals, and systems Vol. 19; no. 1; pp. 65 - 91
Main Authors Ahmed, N. U., Charalambous, C. D.
Format Journal Article
LanguageEnglish
Published London Springer Nature B.V 01.02.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we consider minimax games for stochastic uncertain systems with the pay-off being a nonlinear functional of the uncertain measure where the uncertainty is measured in terms of relative entropy between the uncertain and the nominal measure. The maximizing player is the uncertain measure, while the minimizer is the control which induces a nominal measure. Existence and uniqueness of minimax solutions are derived on suitable spaces of measures. Several examples are presented illustrating the results. Subsequently, the results are also applied to controlled stochastic differential equations on Hilbert spaces. Based on infinite dimensional extension of Girsanov's measure transformation, martingale solutions are used in establishing existence and uniqueness of minimax strategies. Moreover, some basic properties of the relative entropy of measures on infinite dimensional spaces are presented and then applied to uncertain systems described by a stochastic differential inclusion on Hilbert space. An explicit expression for the worst case measure representing the maximizing player (adversary) is found. [PUBLICATION ABSTRACT]
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0932-4194
1435-568X
DOI:10.1007/s00498-006-0009-x