Confidence intervals for the Cox model test error from cross-validation

Cross-validation (CV) is one of the most widely used techniques in statistical learning for estimating the test error of a model, but its behavior is not yet fully understood. It has been shown that standard confidence intervals for test error using estimates from CV may have coverage below nominal...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 42; no. 25; pp. 4532 - 4541
Main Authors Sun, Min Woo, Tibshirani, Robert
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 10.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cross-validation (CV) is one of the most widely used techniques in statistical learning for estimating the test error of a model, but its behavior is not yet fully understood. It has been shown that standard confidence intervals for test error using estimates from CV may have coverage below nominal levels. This phenomenon occurs because each sample is used in both the training and testing procedures during CV and as a result, the CV estimates of the errors become correlated. Without accounting for this correlation, the estimate of the variance is smaller than it should be. One way to mitigate this issue is by estimating the mean squared error of the prediction error instead using nested CV. This approach has been shown to achieve superior coverage compared to intervals derived from standard CV. In this work, we generalize the nested CV idea to the Cox proportional hazards model and explore various choices of test error for this setting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0277-6715
1097-0258
1097-0258
DOI:10.1002/sim.9873