Phenotypic Differences of Leaves and Transcriptome Analysis of Fraxinus mandshurica × Fraxinus sogdiana F1 Variety
Plant leaves, as one of the main organs of plants, have a crucial impact on plant development. In the hybrid F1 variety, one clone “1601” from the hybridization of Fraxinus mandshurica Rupr. × Fraxinus sogdiana Bunge was showed significant differences in leaf development with its female control “M8”...
Saved in:
Published in | Forests Vol. 14; no. 8; p. 1554 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Plant leaves, as one of the main organs of plants, have a crucial impact on plant development. In the hybrid F1 variety, one clone “1601” from the hybridization of Fraxinus mandshurica Rupr. × Fraxinus sogdiana Bunge was showed significant differences in leaf development with its female control “M8”. The leaf phenotypic differences of leaflets and fronds, photosynthesis parameters, rate of leaf water loss and leaf cell size were investigated between 1601 and M8. The leaf phenotypic details showed that the leaflets of 1601 were significantly smaller (leaflet size was 53.78% that of M8) and rounder (leaflet aspect ratio was 66.97% that of M8). Its leaflet margins were more serrated (the serrate number was 33.74% that of M8). The fronds of 1601 had more leaflets (1.17-fold that of M8) and shorter leaflet distance (73.44% that of M8). The photosynthetic heterosis was also significant (the net photosynthetic rate in 1601 was 1.43 times that of M8) and the rate of leaf water loss in 1601 was lower than M8. Meanwhile, the results of the leaf microstructure showed that the mesophyll cell area of M8 was smaller than 1601, indicating that the difference in leaf size was caused by the number of cells. To analyze the reasons for these differences in leaf phenotype and explore the important regulatory genes potentially involved in leaf development, the comparative transcriptome analysis of M8 and 1601 and weighted gene coexpression network analysis (WGCNA) were completed. The results showed that hormones, such as auxins and brassinolides (BRs), along with the transcription factors (TFs), such as the growth-regulating factors (GRFs) and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATION CELL FACTOR (TCPs), play essential roles in the difference of leaf size between 1601 and M8 by regulating cell proliferation. These data further shed light on the developmental mechanisms of the leaves of F. mandshurica. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f14081554 |