Perfectly normal nonrealcompact spaces under Martin's Maximum

We analyze the behavior of a perfectly normal nonrealcompact space (ω1,τ)$(\omega _1, \tau)$ on ω1$\omega _1$ such that for every γ<ω1$\gamma <\omega _1$, γ$\gamma$ is τ$\tau$‐open and γ+ω$\gamma +\omega$ is τ$\tau$‐closed under Martin's Maximum. We show that there exists a club subset D$...

Full description

Saved in:
Bibliographic Details
Published inMathematical logic quarterly Vol. 70; no. 4; pp. 388 - 397
Main Author Ishiu, Tetsuya
Format Journal Article
LanguageEnglish
Published Berlin Wiley Subscription Services, Inc 01.11.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:We analyze the behavior of a perfectly normal nonrealcompact space (ω1,τ)$(\omega _1, \tau)$ on ω1$\omega _1$ such that for every γ<ω1$\gamma <\omega _1$, γ$\gamma$ is τ$\tau$‐open and γ+ω$\gamma +\omega$ is τ$\tau$‐closed under Martin's Maximum. We show that there exists a club subset D$D$ of ω1$\omega _1$ such that for a stationary subset of δ∈acc(D)$\delta \in \operatorname{acc}(D)$, for all τ$\tau$‐open neighborhood N$N$ of δ+n$\delta +n$, there exists η<δ$\eta <\delta$ such that for all ξ∈D∩[η,δ)$\xi \in D\cap [\eta, \delta)$, N∩ξ$N\cap \xi$ is unbounded in ξ$\xi$.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.202400002