Luminescence Properties of Samarium Ion‐Doped Silicoborate Glasses for Application in Optoelectronic Material

Gadolinium sodium silicoborate glasses doped with samarium ion (Sm:GNSB) are prepared by the melt quenching technique. The glasses are studied for their physical, optical, and luminescence properties. The density, molar volume, and refractive index of glass are investigated as a function of Sm2O3 co...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. A, Applications and materials science Vol. 220; no. 10
Main Authors Intachai, Nuttawadee, Kothan, Suchart, Wantana, Nuanthip, Kaewjaeng, Siriprapa, Thandar Htun, Khin, Kim, Hong Joo, Kaewkhao, Jakrapong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gadolinium sodium silicoborate glasses doped with samarium ion (Sm:GNSB) are prepared by the melt quenching technique. The glasses are studied for their physical, optical, and luminescence properties. The density, molar volume, and refractive index of glass are investigated as a function of Sm2O3 concentrations. Addition of Sm3+ ions in the glass matrix shows several absorption peaks in the visible and near‐infrared region, verified by the absorption spectra. The energy transfer from Gd3+ to Sm3+ is observed by photoluminescence (PL) emission spectra, which illustrates the strongest emission occurring at 600 nm (4G5/2 → 6H7/2). The PL decay time of 600 nm emission under 403 nm excitation decreases with increasing Sm2O3 concentrations. The color coordinates of the International Commission on Illumination chromaticity show different shades of orange color under different excitations. The result of radioluminescence shows a similar trend to PL emission spectra. Glasses doped with Sm3+ ions find potential use as an orange color‐emitting optoelectronic device application. Herein, an optoelectronic material which emits light in the orange–red region which can be developed from the gadolinium sodium silicoborate glasses doped with samarium ion (Sm:GNSB) is discussed. The luminescence concentration quenching of the Sm:GNSB glass samples is found at 1.00 mol% for excitation source wavelengths at 275, 403 nm, and X‐ray.
ISSN:1862-6300
1862-6319
DOI:10.1002/pssa.202200440