Blasting pressure for LiNi1/3Mn1/3Co1/3O2 battery evaluated by thermally adiabatic testing
Gas evolution that resulted in the pressure elevation on LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC111) battery in case of a runaway reaction was discussed with the thermally explosive behaviors. The NMC111 cell and 2 series-connected (2S) NMC111 module both with 100% SoCs (state of charges) were examined the...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 144; no. 2; pp. 335 - 342 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Gas evolution that resulted in the pressure elevation on LiNi
1/3
Mn
1/3
Co
1/3
O
2
(NMC111) battery in case of a runaway reaction was discussed with the thermally explosive behaviors. The NMC111 cell and 2 series-connected (2S) NMC111 module both with 100% SoCs (state of charges) were examined the pressure rise rates in an open-circuit voltage (OCV) state using VSP2 adiabatic calorimetry. The charged NMC111 module underwent an extremely runaway reaction at elevated temperatures and caused a thermal explosion due to high potential energy inside the battery and interaction with the cell components. The surface temperature of the cell during the charge-discharge cycle was measured to compare with the difference in heat accumulation at 0.75, 1, 2 C-rates. Furthermore, the blasting pressure that propagated a thermal explosion for both single cell and 2S module were evaluated. The significant explosion potential increased with the electric potential. Moreover, the considerable quantities of gases eruption from the full-charged batteries can result in battery rupture and flames from a confined battery housing. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-020-10195-y |