A method of preparing Escherichia coli 16 S RNA possessing previously unobserved 30 S ribosomal protein binding sites

A method of preparing 16 S RNA has been developed which yields RNA capable of binding specifically at least 12, and possibly 13, 30 S ribosomal proteins. This RNA, prepared by precipitation from 30 S subunits using a mixture of acetic acid and urea, is able to form stable complexes with proteins S3,...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular biology Vol. 101; no. 2; pp. 155 - 170
Main Authors Hochkeppel, Heinz-Kurt, Spicer, Eleanor, Craven, Gary R.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 25.02.1976
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A method of preparing 16 S RNA has been developed which yields RNA capable of binding specifically at least 12, and possibly 13, 30 S ribosomal proteins. This RNA, prepared by precipitation from 30 S subunits using a mixture of acetic acid and urea, is able to form stable complexes with proteins S3, S5, S9, S12, S13, S18 and possibly S11. In addition, this RNA has not been impaired in its capacity to interact with proteins S4, S7, S8, S15, S17 and S20, which are proteins that most other workers have shown to bind RNA prepared by the traditional phenol extraction procedure (Held et al., 1974; Garrett et al., 1971; Schaup et al., 1970,1971). We have applied several criteria of specificity to the binding of proteins to 16 S RNA prepared by the acetic acid-urea method. First, the new set of proteins interacts only with acetic acid-urea 16 S RNA and not with 16 S RNA prepared by the phenol method or with 23 S RNA prepared by the acetic acid-urea procedure. Second, 50 S ribosomal proteins do not interact with acetic acidurea 16 S RNA but do bind to 23 S RNA. Third, in the case of protein S9, we have shown that the bound protein co-sediments with acetic acid-urea 16 S RNA in a sucrose gradient. Additionally, a saturation binding experiment showed that approximately one mole of protein S9 binds acetic acid-urea 16 S RNA at saturation. Thus, we conclude that the method employed for the preparation of 16 S RNA greatly influences the ability of the RNA to form specific protein complexes. The significance of these results is discussed with regard to the in vitro assembly sequence.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2836
1089-8638
DOI:10.1016/0022-2836(76)90369-7